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Abstract
We use the large isometry group of the Stenzel asymptotically conical Calabi-Yau metric

on T ?S4 to study the relationship between the Spin(7) instanton and Hermitian-Yang Mills
(HYM) equations. We reduce both problems to tractable ODEs and look for invariant so-
lutions. In the abelian case, we establish local equivalence and prove a global nonexistence
result. We analyze the nonabelian equations with structure group SO(3) and construct the
moduli space of invariant Spin(7) instantons in this setting. This includes an explicit one pa-
rameter family of irreducible Spin(7) instantons only one of which is HYM. We thus negatively
resolve the question regarding the equivalence of the two gauge theoretic PDEs. The HYM
connections play a role in the compactification of this moduli space, exhibiting a phenomenon
that we aim to further look into in future work.
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1 Introduction

1.1 Summary
The inclusion of SU(4) in Spin(7) demonstrates that a Calabi-Yau (CY) 4-fold is -in a natural way-
a Spin(7) manifold. The SU(4) and Spin(7) structures give rise to associated generalised instan-
ton equations: the Hermitian Yang-Mills (HYM) equations and the Spin(7) instanton equations
respectively. It is natural to inquire about the relationship of these two gauge theoretic problems.
One immediately observes that HYM is a stronger condition. In the compact case, it is known
that as long as an HYM connection exists, the two types of instantons coincide (Lewis [5]). Conse-
quently, if one hopes to display a compact counterexample to equivalence, there must not be any
HYM connections at all. Furthermore, we have a general existence theorem for HYM connections
over stable holomorphic bundles (Uhlenbeck, Yau [11]). This restricts the choices of bundles one
could look at. Finally, compact, irreducible special holonomy manifolds admit no continuous sym-
metries (Joyce, [3]). This precludes the use of symmetry techniques. We are thus motivated to
look for a non-compact counterexample. Since Lewis’s argument is essentially an energy estimate,
it does not apply to the noncompact setting.

We study a non-compact cohomogeneity one CY 4-fold: the cotangent bundle of the 4-sphere
equipped with the Stenzel metric (Stenzel [10]). We use the natural cohomogeneity one SO(5)-
action to reduce the instanton equations to tractable ODEs and proceed to study the SO(5)-
invariant solutions. In section 2, we study the abelian equations. We establish the local equivalence
of the two problems and prove a global nonexistence result. In section 3, we study the nonabelian
equations corresponding to the structure group SO(3). We classify the relevant cohomogeneity
one bundles and their invariant connections and we adjust the extension criterion of Eschenburg
and Wang (Eschenburg, Wang[1]) to this setting. We construct the full moduli space of SO(5)-
invariant Spin(7) instantons with structure group SO(3). This contains solutions living on two
distinct bundles which agree outside of a codimension 4 Cayley submanifold. Each bundle carries
a 1-parameter family of instantons. Each of these families contains precisely one HYM connection
in its interior. This negatively resolves the question regarding the equivalence of the two equations.
One of the families is a closed interval. The other is a half-open half-closed interval. Its missing
endpoint is the (unique) HYM connection on the other bundle. Our example suggests that the
HYM connections might play a role in the compactification of Spin(7) instanton moduli spaces
(over noncompact CY 4-folds), a phenomenon we intend to further look into in future work.

1.2 The Stenzel Manifold

In this section we provide a brief introduction to the Stenzel CY 4-fold X8. For details, we refer to
the articles (Stenzel [10]), (Oliveira [7]). The latter carries out the corresponding calculations in
complex dimension 3. The overall technique for studying invariant objects in cohomogeneity one
is essentially the same as in the article (Lotay-Oliveira [6]).

1.2.1 The Underlying Manifold and the SO(5)-Action

The underlying space of X8 is the cotangent bundle of the 4-sphere. The natural SO(5) action
on S4 extends to T ?S4 by pullback. The singular orbit is the zero section S4. Its stabiliser is the
group SO(4). The principal orbits are the positive radius sphere bundles in the metric inherited
by R10. Their stabiliser is the group SO(3). They are 7-dimensional Stiefel manifolds.

The underlying space of X8 can be equivalently realised as a complex quadric in C5. It thus
inherits a natural complex structure. Consider the degree 2 homogeneous polynomial:

F
def
= z2

1 + ...+ z2
5 .

We split the complex coordinates of C5 into their real and imaginary parts zj = xj + iyj and
introduce the functions:

r2 def
= |z1|2 + |z2|2 + |z3|2 + |z4|2 + |z5|2,

R2
+

def
= x2

1 + x2
2 + x2

3 + x2
4 + x2

5, R2
−

def
= y2

1 + y2
2 + y2

3 + y2
4 + y2

5 .
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1.2 The Stenzel Manifold

The following relations follow:

R2
+ =

r2 + 1

2
, R2

− =
r2 − 1

2
, r2 = R2

+ +R2
−.

Define the map:
Ψ : C5 → R10,

(z1, ..., z5) 7→
(
x

R+
, yᵀ
)
. (1.1)

It may be easily seen that this cuts down to a diffeomorphism:

Ψ : F−1(1)
∼−→ T ?S4. (1.2)

The minimum value of r on X8 is r = 1 and the associated level set corresponds to the singular
orbit. The latter sits inside X8 as an embedded totally real submanifold (Patrizio [8]). We will
denote the principal orbit at radius r > 1 as Or. We define the reference points:

pr
def
= (R+, iR−, 0, 0, 0)

ᵀ ∈ Or, p1
def
= (1, 0, 0, 0, 0)

ᵀ ∈ S4. (1.3)

They form a ray from p1 ∈ S4 to infinity. This choice fixes the embeddings of the principal and
singular stabiliser groups in SO(5). They are the lower right copies of SO(3) and SO(4) respectively.
Furthermore, the choice (1.3) induces a projection map exhibiting Or as a coset manifold:

π : SO(5)→ Or,
g 7→ gpr. (1.4)

The complement of the singular orbit splits as:

T ?S4 − S4
∼= (0,∞)× SO(5)

SO(3)
. (1.5)

We study the adjoint action of SO(5) to obtain a natural frame on TprOr. The Lie algebra so(5)
consists of all 5× 5 antisymmetric matrices under the commutator bracket. It is given by:

so(5) = Span
{
Cij | 1 ≤ i < j ≤ 5

}
,

where Cij = eij − eji and eij is the matrix with ij entry equal to 1 and all other entries vanishing.
The bracket is characterized by the relations:[

Cij , Cik
]

= −Cjk, (1.6)[
Cij , Ckl

]
= 0 for i 6= j 6= k 6= l. (1.7)

We introduce the following notation:

X1
def
= C12, X2

def
= C13, X3

def
= C14, X4

def
= C15, X5

def
= C23

X6
def
= C24, X7

def
= C25, X8

def
= C34, X9

def
= C35, X10

def
= C45.

Let ρ be the restriction of AdSO(5) to Stab(pr). An element g ∈ SO(3) acts on A ∈ so(5) by
conjugation. We split this representation into irreducibles:

so(5) = 〈X1〉 ⊕ 〈X2, X3, X4〉 ⊕ 〈X5, X6, X7〉 ⊕ 〈X10,−X9, X8〉. (1.8)

The first summand is trivial and the other three summands are isomorphic to the vector repre-
sentation of SO(3) (the order in which the X

′s
i appear corresponds to the standard basis of R3).

The Lie algebra of the stabiliser is given by the third summand. We define the natural reductive
complement:

m = 〈X1〉 ⊕ 〈X2, X3, X4〉 ⊕ 〈X5, X6, X7〉. (1.9)

Owing to (1.8), it is stable under ρ yielding the isotropy representation. Using (1.1) and (1.4) we
find that:

dπ|Id : m
∼−→ TprOr,

A 7→
(
R+c1(A),−R−r2(A)

)
. (1.10)
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1.2 The Stenzel Manifold

Here c1(·) denotes the operation of taking the first column and r2(·) denotes the operation of taking
the second row. Using 1.10 we obtain the equations:

dπ|IdX1 = −R+∂x2
|pr

+R−∂y1|pr
, (1.11)

dπ|IdX2 = −R+∂x3
|pr
, (1.12)

dπ|IdX3 = −R+∂x4
|pr
, (1.13)

dπ|IdX4 = −R+∂x5
|pr
, (1.14)

dπ|IdX5 = −R−∂y3|pr
, (1.15)

dπ|IdX6 = −R−∂y4|pr
, (1.16)

dπ|IdX7 = −R−∂y5|pr
. (1.17)

It is evident from (1.10)-(1.13) that (for r=1) X1, X2, X3, X4 correspond to infinitesimal motions
in the horizontal direction along the base S4. Similarly, (1.14)-(1.17) demonstrate that (for r>1)
X5, X6, X7 correspond to infinitesimal vertical motions along the fiber S3 of the sphere bundle.

To obtain a basis of TprX8 we need to combine X1, ..., X7 with a radial vector:

Proposition 1.1. There exists a unique smooth vector field ∂r on X8 − S4 characterised by the
following properties:

1. The vector field ∂r is tangent to (0,∞) in the splitting 1.5.

2. dr (∂r) = 1.

Let (x, y) ∈ X8 ⊂ C5. The vector field ∂r can be expressed as follows in terms of the standard
coordinate vector fields on C5:

∂r|(x,y) =
r

2R2
+

 5∑
j=1

xj∂xj|(x,y)

+
r

2R2
−

 5∑
j=1

yj∂yj|(x,y)

 . (1.18)

Evaluating the expression (1.18) at pr we obtain:

∂r =
r

2R+
∂x1 +

r

2R−
∂y2 . (1.19)

Over pr, tensors can be written as linear combinations of tensor products of Xi, ∂r and the dual
coframe θi, dr. The tensor in question is invariant if and only if it is stabilised by the isotropy
action. In that case, the basis expansion at pr is well defined over X8 − S4. Of all the vectors in
our frame, only ∂r and X1 satisfy this condition. From here on, we will suppress application of dπ
and evaluation at pr. Using (1.11-1.19) we conclude that:

dx1 =
r

2R+
dr, dy1 = R−θ

1, (1.20)

dx2 = −R+θ
1, dy2 =

r

2R−
dr, (1.21)

dx3 = −R+θ
2, dy3 = −R−θ5, (1.22)

dx4 = −R+θ
3, dy4 = −R−θ6, (1.23)

dx5 = −R+θ
4, dy5 = −R−θ7. (1.24)

Using equations (1.20-1.24) we obtain:

dz1 =
r

2R+
dr + iR−θ

1, (1.25)

dz2 = −R+θ
1 + i

r

2R−
dr, (1.26)

dz3 = −R+θ
2 − iR−θ5, (1.27)

dz4 = −R+θ
3 − iR−θ6, (1.28)

dz5 = −R+θ
4 − iR−θ7. (1.29)
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1.2 The Stenzel Manifold

1.2.2 The Stenzel Metric

Since the second cohomology group vanishes, any Kähler structure comes from a global Kähler
potential F(r2). The associated Kähler form will then be:

ω =
i

2
∂∂F(r2).

We introduce the functions:

P (r)
def
=

r

2

(
R+

R−
+
R−
R+

)
F ′(r2) + 2rR+R−F ′′(r2), (1.30)

Q(r)
def
= R+R−F ′(r2). (1.31)

A short calculation demonstrates that:

ω = P (r)dr ∧ θ1 +Q(r)
(
θ25 + θ36 + θ47

)
. (1.32)

The volume form of the resulting metric looks like:

Volω =
ω4

4!
= −PQ3dr ∧ θ1234567. (1.33)

The complex structure J can be written in terms of invariant forms:

JX1 = −2R+R−
r

∂r, J∂r =
r

2R+R−
X1, (1.34)

JX2 =
R+

R−
X5, JX5 = −R−

R+
X2, (1.35)

JX3 =
R+

R−
X6, JX6 = −R−

R+
X3, (1.36)

JX4 =
R+

R−
X7, JX7 = −R−

R+
X4. (1.37)

Formulae (1.32), (1.34)-(1.37) can be used to obtain the associated Riemannian metric:

g =
rP

2R+R−
dr ⊗ dr +

2R+R−P

r
θ1 ⊗ θ1 (1.38)

+
R+Q

R−

(
θ2 ⊗ θ2 + θ3 ⊗ θ3 + θ4 ⊗ θ4

)
+
R−Q

R+

(
θ5 ⊗ θ5 + θ6 ⊗ θ6 + θ7 ⊗ θ7

)
.

Among the invariant Kähler structures discussed so far, precisely one is Calabi-Yau: the Stenzel
metric. We begin with a simple proposition characterizing the canonical bundle of X8:

Proposition 1.2. The bundle KX8 is holomorphically trivial.

Proof. Let Si ⊂ C5 be the open subset where zi 6= 0. Introduce the following (4, 0)-form on Si:

Ωi
def
=

1

zi
dzi+1 ∧ dzi+2 ∧ ... ∧ dzi−1. (1.39)

Here the indices are reduced mod 5. It is easily checked that the forms ι?X8Ωi glue to a global
holomorphic volume form on X8.

The trivialization Ω is easily written in terms of invariant forms:

Re(Ω) = R3
+θ

1234 −R+R
2
−

(
θ1267 + θ1537 + θ1564

)
+
r

2
dr ∧

(
R+

(
θ237 + θ264 + θ534

)
−
R2
−

R+
θ567

)
, (1.40)
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1.2 The Stenzel Manifold

Im(Ω) =−R3
−θ

1567 +R2
+R−

(
θ1237 + θ1264 + θ1534

)
+
r

2
dr ∧

(
R−

(
θ267 + θ537 + θ564

)
−
R2

+

R−
θ234

)
. (1.41)

The associated volume form is then given by:

VolΩ = (−1)
n(n−1)

2

(
i

2

)n
Ω ∧ Ω = −r

2
R2

+R
2
−dr ∧ θ1234567. (1.42)

The Calabi-Yau equation is equivalent to volume compatibility:

Volω = VolΩ.

Using (1.33) and (1.42), we discover that this amounts to an ODE for F(r2):

PQ3 =
r

2
R2

+R
2
−. (1.43)

Equation (1.43) can be solved explicitly. We obtain:

P (r) =

(
3

4

) 3
4 r(r2 + 1)

(r2 + 2)
3
4 (r + 1)

1
2 (r − 1)

1
2

, (1.44)

Q(r) =
1

2

(
4

3

) 1
4

(r2 + 2)
1
4 (r + 1)

1
2 (r − 1)

1
2 . (1.45)

We compute the pointwise norms of the vectors in the standard framing:

|X1|2 =

(
3

4

) 3
4 (r2 + 1)

3
2

(r2 + 2)
3
4

, (1.46)

|∂r|2 =

(
3

4

) 3
4 r2(r2 + 1)

1
2

(r2 + 2)
3
4 (r + 1)(r − 1)

, (1.47)

|X2|2 = |X3|2 = |X4|2 =
1

2

(
4

3

) 1
4

(r2 + 1)
1
2 (r2 + 2)

1
4 , (1.48)

|X5|2 = |X6|2 = |X7|2 =
1

2

(
4

3

) 1
4 (r2 + 2)

1
4 (r + 1)(r − 1)

(r2 + 1)
1
2

. (1.49)

As r → 1, |∂r|2 blows up monotonically, |X1|2, |X2|2, |X3|2, |X4|2 approach 1 and |X5|2, |X6|2, |X7|2
tend to 0. Over S4, the kernel of the projection map (1.10) extends to so(4) so that X5, X6, X7

project to 0. Consequently, the decay of their norms holds for any smooth metric. We can pull g
back to the singular orbit S4 to find that it is round of unit radius.

The Cayley calibration of a CY 4-fold is given by (Salamon-Walpuski [9] p.81):

Φ =
ω2

2
+ Re(Ω). (1.50)

Using (1.50), we obtain:

Φ = dr ∧

[
PQ

(
θ125 + θ136 + θ147

)
+
rR+

2

(
θ237 + θ264 + θ534

)
−
rR2
−

2R+
θ567

]
+R3

+θ
1234 −R+R

2
−

(
θ1267 + θ1537 + θ1564

)
+Q2

(
θ2536 + θ2547 + θ3647

)
. (1.51)

When we pull Φ back to the singular orbit S4, only the θ1234 term survives. On S4 we have r = 1.
We therefore find that:

ι?S4Φ = θ1234. (1.52)
We conclude that the singluar orbit is calibrated for Φ and is therefore a Cayley submanifold of
the Spin(7) manifold (X8,Φ). As such, it is volume minimizing in its homology class (Joyce [3]).

In the remainder, we will denote the Stenzel manifold
(
X8, g, J, ω,Ω,Φ

)
simply by X8.
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2 SO(5)-Invariant Instantons with Structure Group U(1)

2.1 Cohomogeneity One Bundles with Structure Group U(1)
Let r > 1. The homogeneous U(1) bundles over the orbit Or correspond to element-conjugacy (i.e.
conjugation by a fixed element in the target) classes of Lie group homomorphisms:

λ : SO(3)→ U(1). (2.1)

For the classification of homogeneous bundles and invariant connections see (Wang [12], Oliveira
[7] Section 3.1, Lotay-Oliveria [6] Section 2.4). Our notation and conventions agree with the latter.

Since the target is abelian, the element-conjugacy relation is trivial: the classes are singletons. The
only map of type (2.1) is φ = 1. Consequently, the only homogeneous U(1) bundle over Or -up to
equivariant princpal bundle isomorphism- is the trivial one:

P1 = Or ×U(1) =
SO(5)

SO(3)
×U(1). (2.2)

SO(5)- invariant U(1)-connections on P1 are parameterised by representation morphisms:

Λ :
(
m,AdSO(5)|SO(3)

)
→
(
u(1),AdU(1) ◦ λ

)
= (iR, 1) . (2.3)

Recalling the decomposition (1.9) and applying Schur’s lemma, we obtain that:

HomSO(3)

(
m, u(1)

)
= iR. (2.4)

Here, the imaginary number iα corresponds to:

Λα
def
= iαθ1. (2.5)

The cohomogeneity one bundle over X8 − S4 associated to P1 is obtained by pulling back along
the map:

X8 − S4 ∼−→ (1,∞)× SO(5)
SO(3)

�
SO(5)
SO(3)

.

We slightly abuse notation by suppressing the pullback symbol and denoting the resulting bundle
by P1. It is trivial and it admits a unique extension across the singular orbit given by X8 ×U(1).

Connections over X8 − S4 can be put in temporal gauge through an equivariant gauge transfor-
mation (Lotay-Oliveira [6] p. 21, Remark 5). Consequently, each invariant connection on P1 is
equivariantly gauge equivalent to one lying in the space:

Ainv (P1) =
{
iα(r)θ1 | a ∈ C∞ (0,∞)

}
⊂ A (P1) . (2.6)

These connections can only be related by an r-independent gauge transformation. If such a gauge
transformation is equivariant, it is given by a fixed element of U(1) and it stabilises all connections.
It follows that no two distinct elements of Ainv (P1) are equivariantly gauge equivalent.

We compute the curvature of A ∈ A (P1):

FA = dA

= i
dα

dr
dr ∧ θ1 + iα(r)dθ1. (2.7)

To simplify the second term we use the Maurer-Cartan relations (Kobayashi, Nomizu [4] p. 41).
For this calculation we require the structure constants of so(5). They can be computed using (1.6)
and (1.7). Carrying out the calculation gives:

dθ1 = θ25 + θ36 + θ47.

Incorporating this into (2.7), we obtain:

FA = i
dα

dr
dr ∧ θ1 + iα(r)

(
θ25 + θ36 + θ47

)
. (2.8)

The Ambrose-Singer holonomy theorem implies that any non-flat U(1) connection is irreducible.
Consequently, all elements of Ainv (P1) -excluding the trivial connection- are irreducible.
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2.2 The SO(5)-Invariant ODEs

2.2 The SO(5)-Invariant ODEs
The Spin(7) instanton equation reads:

?g FA = −Φ ∧ FA. (2.9)

Since the metric diagonalises we have:

?g θ
i1 ∧ ... ∧ θik =

√
det(g)

gi1i1 ...gikik
θik+1 ∧ ... ∧ θin . (2.10)

Here, i1, ..., in is an even permutation of 1, ..., n. Using (2.10) and (1.38) we compute:

?g dr ∧ θ1 = −Q
3

P
θ234567,

?g θ
25 = −PQdr ∧ θ13467,

?g θ
36 = −PQdr ∧ θ12356.

Incorporating these in (2.8), we obtain:

?g FA = −iQ
3

P

dα

dr
θ234567 − iPQαdr ∧

(
θ13467 + θ12457 + θ12356

)
. (2.11)

We now use (1.51) and (2.8) to compute:

Φ ∧ FA = −3iQ2α(r)θ234567 − i
(
Q2 dα

dr
+ 2PQα(r)

)
dr ∧

(
θ13467 + θ12457 + θ12356

)
. (2.12)

Imposing (2.9) and comparing coefficients gives two equations. These are the same and read:

dα

dr
= −3

P

Q
α. (2.13)

The Hermitian Yang-Mills equations are:

FA ∧ ?ω = 0, (2.14)
FA ∧ Ω = 0. (2.15)

We find that (2.15) holds identically. This can be seen by direct computation using (1.40), (1.41)
and (2.8). It follows that an SO(5)-invariant U(1)-connection A is HYM if and only if (2.14) holds.

Over a Hermitian manifold of complex dimension n, we have:

?g ω =
ωn−1

(n− 1)!
. (2.16)

Using (1.32), we compute:

ω3 = 6PQ2dr ∧
(
θ12536 + θ12547 + θ13647

)
+ 6Q3θ253647. (2.17)

Using (2.16), (2.17) and (2.8) we calculate:

FA ∧ ?ω = FA ∧
ω3

3!

= −i
(
Q3 dα

dr
+ 3PQ2α(r)

)
dr ∧ θ1234567.

It follows that an SO(5)-invariant U(1)-connection is HYM if and only if:

dα

dr
= −3

P

Q
α. (2.18)

We observe that this equation is the same as (2.13).

Using the uniqueness part of the standard Picard theorem, we obtain:

Theorem 2.1. An SO(5)-invariant U(1)-connection over X8 − S4 is a Spin(7) instanton if and
only if it is Hermitian-Yang-Mills.

8



2.3 Explicit Solution and Breakdown Near the Singular Orbit

2.3 Explicit Solution and Breakdown Near the Singular Orbit
We study the ODE (2.18). Using (1.44) and (1.45) we write it as:

da

dr
= −9

2

r(r2 + 1)

(r2 + 2)(r + 1)(r − 1)
α(r). (2.19)

We integrate (2.19) directly to see that the solution takes the following form for some K ∈ R:

α(r) =
K

(r2 + 2)
3
4 (r + 1)

3
2 (r − 1)

3
2

. (2.20)

An elementary calculation yields:

da

dr
= −9K

2

r(r2 + 1)

(r2 + 2)
7
4 (r + 1)

5
2 (r − 1)

5
2

. (2.21)

Recalling the formulae (2.6) and (2.8) and incorporating (2.20) and (2.21), we obtain:

Theorem 2.2. Let P1 be the unique cohomogeneity one U(1)-bundle over X8 − S4 (i.e. the
trivial bundle). There exists a one-parameter family of smooth SO(5)-invariant Spin(7) instantons
AK ∈ Ainv (P1):

AK =
iK

(r2 + 2)
3
4 (r + 1)

3
2 (r − 1)

3
2

θ1 where K ∈ R. (2.22)

All elements of this family are HYM. They are all irreducible -apart from the trivial connection- and
no two of them are gauge equivalent. Furthermore, these are all the invariant Spin(7) instantons
on P1.

The curvature of AK is given by:

FAK = iK

(
−9

2

r(r2 + 1)

(r2 + 2)
7
4 (r + 1)

5
2 (r − 1)

5
2

dr ∧ θ1 +
θ25 + θ36 + θ47

(r2 + 2)
3
4 (r + 1)

3
2 (r − 1)

3
2

)
. (2.23)

We need to justify our claim that these solutions lie in distinct gauge equivalence classes. We have
seen that this holds when we quotient by the group of equivariant gauge transformations. The claim
follows from the fact that gauge equivalent, irreducible, invariant connections are automatically
equivariantly gauge equivalent.

Using (1.46), (1.47), (1.48) and (1.49), we find that:

‖FA‖2g = O
(
|r − 1|−4

)
as r → 1. (2.24)

In particular:
lim
r→1
‖FA‖2g = +∞.

Since the metric extends smoothly to the singular orbit, this behaviour is precluded for connections
that are smooth over the whole space. We therefore obtain the following global nonexistence result:

Theorem 2.3. There exist no global, abelian, SO(5)-invariant Spin(7) instantons/ HYM con-
nections on the Stenzel manifold X8 apart from the trivial connection A = 0 (corresponding to
K = 0).

As a closing remark, we note that breakdown around Cayley 4-folds is an interesting feature of the
Spin(7)-instanton equation. It is related to the non-compactness of the moduli space. In Donaldson
theory, noncompactness occurs in the form of a sequence of ASD instantons failing to have a limit
due to finitely many point singularities. In the 8-dimensional Spin(7) setting, points are typically
replaced by four-dimensional Cayley submanifolds.

The non-existence result we encountered has to do with abelian gauge theory being too coarse
to capture the behaviour we would like to see. In the following section we study the nonabelian
equations associated to the structure group SO(3). The nonlinearity induced by the noncommu-
tativity of the group smoothes the equations and we are able to obtain solutions that extend over
the singular orbit S4.
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3 SO(5)-Invariant Instantons with Structure Group SO(3):
Preliminaries and Analysis on the Trivial Bundle

3.1 Cohomogeneity One Bundles with Structure Group SO(3)

3.1.1 Bundles and Bundle Extensions

Let r > 1. The homogeneous SO(3) bundles over the orbit Or correspond to element-conjugacy
classes of Lie group homomorphisms:

λ : SO(3)→ SO(3). (3.1)

There are two such classes. They are represented by the trivial map and the identity respectively.
Consequently, there are precisely two homogeneous principal SO(3) bundles over Or -up to equiv-
ariant principal bundle isomorphism. We denote these by P1 and PId. Slightly abusing notation,
we also denote by P1 and PId the pullbacks of the respective bundles along the map:

X8 − S4 ∼−→ (1,∞)× SO(5)
SO(3)

�
SO(5)
SO(3)

.

We now classify smooth homogeneous extensions of P1 and PId across the singular orbit S4. These
correspond to element-conjugacy classes of Lie group homomorphisms:

µ : SO(4)→ SO(3). (3.2)

Once such a map is chosen, one uses it to form the associated homogeneous bundle Pµ over S4.
The extension is then determined by pulling Pµ back over X8 through the natural projection:

X8 ∼= T ?S4 � S4.

The element-conjugacy class of the restriction of µ to the lower diagonal copy of SO(3) determines
which bundle is being extended.

We are therefore required to classify element-conjugacy classes of homomorphisms of type (3.2).
Natural representatives are described by passing through the respective universal covers. We have
the two-sheeted covering maps:

πSpin(4) : Sp(1)2 � SO(4),

πSpin(3) : Sp(1) � SO(3);

where:

πSpin(4)(x, y) : H→ H,
q 7→ xqy−1, (3.3)

πSpin(3)(x) = πSpin(4)(x, x)|Im(H)
. (3.4)

It is clear that the upper left copy of SO(3) inside SO(4) corresponds to the anti-diagonal copy of
Sp(1) in Sp(1)2, while the lower right copy of SO(3) corresponds to the diagonal one. Considering
(3.3) and (3.4), we obtain:

SO(4) =
Sp(1)2{

(1, 1), (−1,−1)
} , SO(3) =

Sp(1)
±1

.

There are precisely three element-conjugacy classes of homomorphisms of type (3.2), one of them
being that of the trivial map. The two nontrivial classes are represented by the two projections

π1, π2 : SO(4) =
Sp(1)2{

(1, 1), (−1,−1)
} �

Sp(1)
±1

× Sp(1)
±1

�
Sp(1)
±1

= SO(3).

Hence, there are precisely three principal SO(3)-bundles of cohomogeneity-one over X8. We denote
these as P1, Pπ1

and Pπ2
. The first is the trivial bundle. It extends the trivial bundle on X8−S4.

The other two bundles are nontrivial (see section 4.1.2). They provide distinct extensions of PId.

10



3.1 Cohomogeneity One Bundles with Structure Group SO(3)

3.1.2 Invariant Connections on the Complement of the Singular Orbit

We now classify the invariant connections on the bundles P1 and PId over X8 − S4. For each of
these connections we compute the associated curvature tensor in terms of the standard framing.

In general, an invariant connection A ∈ Ainv (Pλ) corresponds to a map of representations:

Λ :
(
m,AdSO(5)|SO(3)

)
→
(
so(3),AdSO(3) ◦ λ

)
. (3.5)

Given such a map, we use the canonical invariant connection dλ as a reference and write:

A = dλ+ Λ. (3.6)

We first deal with P1. In this case λ = 1 and the target representation is trivial. Recalling the
splitting (1.9) and applying Schur’s lemma, we see that Λ must take the form:

Λ = θ1 ⊗
(
a1 e1 + a2 e2 + a3 e3

)
. (3.7)

The canonical invariant connection Acan1 is represented by d 1 = 0. Evidently, it is flat.

As in section 2.1, any connection over X8 − S4 can be brought to temporal gauge by an equiv-
ariant gauge transformation. It follows that any invariant connection on P1 is equivariantly gauge
equivalent to one lying in the space:

Ainv (P1) =

{
θ1 ⊗

(
a1(r) e1 + a2(r) e2 + a3(r) e3

)
| a1, a2, a3 ∈ C∞ (0,∞)

}
. (3.8)

A gauge transformation relating two elements of Ainv (P1) must be r-independent. If it is equiv-
ariant, it is given by a fixed element of SO(3) acting on Ainv (P1) by conjugation. It follows that
the elements of Ainv (P1) need not lie in distinct equivariant gauge equivalence classes.

A calculation analogous to the one in section 2.1 yields:

FA =

(
dai

dr
dr ∧ θ1 + ai

(
θ25 + θ36 + θ47

))
⊗ ei. (3.9)

The Ambrose-Singer holonomy theorem implies that the elements of A (P1) need not be irreducible.
This happens -for instance- if one of the components ai vanishes identically.

We now work on PId. In this case, the target representation is the adjoint representation of SO(3).
Recalling the decomposition (1.9) and applying Schur’s lemma, we see that equivariant maps of
type (3.5) always vanish on the first summand and either restrict to isomorphisms or the zero map
on the second and third summands. The automorphisms of AdSO(3) are given by multiplication
by fixed scalars. We concude that for λ = Id, maps of type (3.5) look like:

Λ = a
(
θ2 ⊗ e3 − θ3 ⊗ e2 + θ4 ⊗ e1

)
+ b

(
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
, a, b ∈ R.

The canonical invariant connection Acan
Id = d IdSO(3) on Pid takes the form:

Acan
Id = θ8 ⊗ e1 + θ9 ⊗ e2 + θ10 ⊗ e3.

It is not flat. Its curvature is given by:

FAcan
Id

= dAcan
Id +

1

2
[Acan

Id ∧Acan
Id ]

=
(
θ23 + θ56

)
⊗ e1 +

(
θ24 + θ57

)
⊗ e2 +

(
θ34 + θ67

)
⊗ e3.

The radial component of an invariant tensorial 1-form is an invariant section of the adjoint bundle.
In this context, these objects correspond to fixed points of AdSO(3). This representation has no
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3.1 Cohomogeneity One Bundles with Structure Group SO(3)

fixed points, implying that all invariant connections are already in temporal gauge. Consequently,
the space of invariant connections is given by:

Ainv (P1) ={
Acan

Id + a(r)
(
θ2e3 − θ3e2 + θ4e1

)
+ b(r)

(
θ5e3 − θ6e2 + θ7e1

)
|a, b ∈ C∞ (0,∞)

}
. (3.10)

Equivariant gauge transformations correspond to central elements of SO(3). Since SO(3) is cen-
terless, the only possibility is the identity. Consequently, each invariant connection constitutes its
own equivariant gauge equivalence class.

To compute the curvature of a general element A = Acan
Id + Λ ∈ Ainv(PId), we use the formula:

FA = FAcan
Id

+ dAcan
Id

Λ +
1

2
[Λ ∧ Λ] .

Routine calculation yields:

dAcan
Id

Λ = dΛ + [Acan
Id ∧ Λ] =(

b θ14 − a θ17
)
⊗ e1 +

(
a θ16 − b θ13

)
⊗ e2 +

(
b θ12 − a θ15

)
⊗ e3

+
da

dr
dr ∧

(
θ2 ⊗ e3 − θ3 ⊗ e2 + θ4 ⊗ e1

)
+
db

dr
dr ∧

(
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
. (3.11)

The final summand is also easily seen to take the form:
1

2
[Λ ∧ Λ] =

(
−a2 θ23 − ab θ26 + ab θ35 − b2 θ56

)
⊗ e1(

−a2 θ24 − ab θ27 + ab θ45 − b2 θ57
)
⊗ e2(

−a2 θ34 − ab θ37 + ab θ46 − b2 θ67
)
⊗ e3. (3.12)

Overall, we obtain the following expression for the curvature:

FA = (3.13)(
(1− a2) θ23 + (1− b2) θ56 − ab θ26 + ab θ35 + b θ14 − a θ17 +

da

dr
dr ∧ θ4 +

db

dr
dr ∧ θ7

)
⊗ e1

+

(
(1− a2) θ24 + (1− b2) θ57 − ab θ27 + ab θ45 − b θ13 + a θ16 − da

dr
dr ∧ θ3 − db

dr
dr ∧ θ6

)
⊗ e2

+

(
(1− a2) θ34 + (1− b2) θ67 − ab θ37 + ab θ46 + b θ12 − a θ15 +

da

dr
dr ∧ θ2 +

db

dr
dr ∧ θ5

)
⊗ e3.

The Ambrose-Singer holonomy theorem implies that all elements of Ainv (PId) are irreducible.
Since gauge equivalent, irreducible, invariant connections are equivariantly gauge equivalent, the
elements of Ainv (PId) all lie in distinct gauge equivalence classes.

3.1.3 Invariant Connections on the Extended Bundles

It remains to understand how to describe invariant connections on the extensions of P1 and PId
over S4. For P1 this is easy. The unique extension is given by the trivial bundle. The canonical
invariant connection is still equal to zero. It follows that the ad(P1)-valued forms 3.8 are still
meaningful over the extended bundle and describe the relevant invariant connections with this
choice of reference.

The situation is slightly more subtle for PId. The canonical invariant connection of PId disagrees
with those of Pπ1

and Pπ2
. In fact, Acan

Id does not even extend to a connection on either of these
bundles. To see this, we compute the canonical invariant connections of Pπ1

, Pπ2
. These are given

by:

Acan
π1

= dπ1

=
(
θ8 + θ7

)
⊗ e1 +

(
θ9 − θ6

)
⊗ e2 +

(
θ10 + θ5

)
⊗ e3

= Acan
Id +

(
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
, (3.14)
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3.2 The SO(5)-Invariant ODEs on P1: Derivation and Explicit Solution

Acan
π2

= dπ2

=
(
θ8 − θ7

)
⊗ e1 +

(
θ9 + θ6

)
⊗ e2 +

(
θ10 − θ5

)
⊗ e3

= Acan
Id −

(
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
. (3.15)

Let A ∈ Ainv(PId) be an invariant connection over X8 − S4. Then:

A = Acan
Id + a(r)

(
θ2 ⊗ e3 − θ3 ⊗ e2 + θ4 ⊗ e1

)
+ b(r)

(
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
. (3.16)

We rewrite it using Acan
π1

and Acan
π2

as the reference. We obtain:

A = Acan
π1

+ a(r)
(
θ2 ⊗ e3 − θ3 ⊗ e2 + θ4 ⊗ e1

)
+
(
b(r)− 1

) (
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
, (3.17)

A = Acan
π2

+ a(r)
(
θ2 ⊗ e3 − θ3 ⊗ e2 + θ4 ⊗ e1

)
+
(
b(r) + 1

) (
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
. (3.18)

The forms θ5, θ6 and θ7 blow up as r → 1. We conclude that a necessary condition for A to extend
to Pπ1 is:

lim
r→1

b(r) = 1. (3.19)

Similarly, if A extends to Pπ2
we have:

lim
r→1

b(r) = −1. (3.20)

The connection Acan
Id corresponds to a = b = 0. Both conditions (3.19) and (3.20) fail. Conse-

quently Acan
Id does not extend to either Pπ1

or Pπ2
.

3.2 The SO(5)-Invariant ODEs on P1: Derivation and Explicit Solution
We proceed to study the Spin(7) instanton and Hermitian-Yang Mills equations on the bundle P1.
A general invariant connection A is equivariantly gauge equivalent to one of the form (3.8). The
associated curvature tensor FA is given by (3.9). These expressions are manifestly similar to (2.6)
and (2.8). An identical computation to the one carried out in the abelian case gives:

FA ∧ Ω = 0,

FA ∧ ?ω = −

(
Q3 da

i

dr
+ 3PQ2ai(r)

)
dr ∧ θ1234567 ⊗ ei.

Consequently, the invariant Hermitian Yang-Mills equations take the form:

dai

dr
= −3

P

Q
ai. (3.21)

Using (1.50) and computing as in the abelian case we obtain:

Φ ∧ FA = −

3Q2ai(r)θ234567 +

(
Q2 da

i

dr
+ 2PQα(r)

)
dr ∧

(
θ13467 + θ12457 + θ12356

)⊗ ei,
?g FA = −

[
Q3

P

dai

dr
θ234567 + PQaidr ∧

(
θ13467 + θ12457 + θ12356

)]
⊗ ei.

Equating these expressions yields the invariant Spin(7) instanton ODEs. They are identical to
(3.21). We thus obtain the following local equivalence result:

Theorem 3.1. An SO(5)-invariant SO(3)-connection A ∈ Ainv (P1) over X8 − S4 is a Spin(7)
instanton if and only if it is Hermitian-Yang-Mills.

The ODE (3.21) has already been studied in the context of the abelian equations. We immediately
obtain an analogous existence/classification result:
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3.3 Extendibility of Connections Across the Singular Orbit

Theorem 3.2. Let P1 be the trivial cohomogeneity one SO(3)-bundle over X8 − S4. There is a
3-parameter family of invariant Spin(7) instantons AK1,K2,K3 ∈ Ainv (P1):

AK1,K2,K3 =
θ1

(r2 + 2)
3
4 (r + 1)

3
2 (r − 1)

3
2

⊗Kiei where Ki ∈ R.

They are all HYM. Any invariant Spin(7) instanton on P1 is equivariantly gauge equivalent to
some element of this family.

The curvature of AK1,K2,K3 is given by:

FAK1,K2,K3 =

(
−9

2

r(r2 + 1)

(r2 + 2)
7
4 (r + 1)

5
2 (r − 1)

5
2

dr ∧ θ1 +
θ25 + θ36 + θ47

(r2 + 2)
3
4 (r + 1)

3
2 (r − 1)

3
2

)
⊗Kiei.

The Ambrose-Singer holonomy theorem implies that all the (non-zero) instantons of theorem 3.2
are reducible. In fact, they have holonomy U(1). Let A 6= 0 be one of them. Let Q ⊂ P1 denote
the trivial subbundle with fiber U(1) obtained by exponentiating a nonzero vector in the holonomy
algebra. A restricts to an irreducible connection on Q. The resulting instanton is one of those
promised by theorem 2.2. This makes rigorous the apparent similarities with the situation in
section 2.

Unless K1 = K2 = K3 = 0, the curvature norm of AK1,K2,K3 is unbounded as r → 1. We thus
obtain the following global non-existence result:

Theorem 3.3. There are no global SO(5)-invariant Spin(7) instantons/ HYM connections on the
trivial SO(3)- bundle P1 over X8 -apart from the trivial connection A=0.

3.3 Extendibility of Connections Across the Singular Orbit
It remains to study the equations on PId. This is the content of section 4. As we shall see, PId
admits solutions that are well behaved near S4. As a preliminary step, we need to understand
when a general A ∈ Ainv (PId) arises as the restriction of a global connection (either on Pπ1

or
Pπ2

). Our task is to formulate the criterion of Eschenburg and Wang (Eschenburg-Wang [1]) in
the context of gauge theory on X8.

3.3.1 Extendibility of Tensorial Forms: the Criterion of Eschenburg and Wang

Let S be a Lie group and let µ be a Lie group homomorphism:

µ : SO(4)→ S.

Denote by λ the restriction of µ to the bottom right copy of SO(3). Let P be the cohomogeneity
one principal S-bundle over X8 whose restrictions over each orbit Or (r ≥ 1) are given by:

P|Or =

{
SO(5)×(SO(4),µ) S if r = 1

SO(5)×(SO(3),λ) S if r > 1.

Let (V, ρ) be a representation of the group S. We can form the associated vector bundle over X8:

ρ (P )
def
= P ×ρ V.

We consider the problem of extending SO(5)-invariant ρ (P )-valued k-forms across the singular
orbit S4.

Eschenburg and Wang give necessary and sufficient conditions for extending invariant linear tensors
across the singular orbit of a cohomogeneity one space. Since we are interested in bundle-valued
forms, their technique does not apply directly. We resolve this issue by passing to the total space
P and working with V -valued forms instead. In this section we set up the requisite framework to
implement this idea.
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3.3 Extendibility of Connections Across the Singular Orbit

The manifold P is a cohomogeneity one space for the group SO(5) × S. Its principal orbits are
isomorphic to Pλ and its singular orbit is the bundle Pµ.

Define the reference points:

xr
def
=

{
[1, 1] ∈ Pµ if r = 1
[1, 1] ∈ Pλ if r > 1.

With this definition, the point xr lies in the fiber above pr ∈ Or for all r ≥ 1.

Using these reference points, the isotropy subgroups corresponding to the principal and singular
orbits are respectively given by:

Stab (xr) =
{

(h, λ(h)) ∈ SO(5)× S such that h ∈ SO(3)
} ∼= SO(3), (3.22)

Stab (x1) =
{

(h, µ(h)) ∈ SO(5)× S such that h ∈ SO(4)
} ∼= SO(4). (3.23)

In formulae (3.22) and (3.23), SO(4) and SO(3) denote the bottom right inclusions of these groups
in SO(5). In what follows, when we consider the action of SO(4) on P , it will be through its
embedding in SO(5)× S as the singular isotropy group (3.23).

Let ω be an invariant, tensorial form of type ρ. Its extendibility can be decided by studying the
restriction ω|W along a particularly simple embedded submanifold W ⊂ P . This will make the
problem tractable. Let W be the union of the SO(4)-orbits of all points xr in P :

W
def
=
⋃
r≥1

Stab (x1) xr. (3.24)

This is a 4-dimensional linear SO(4)-representation. The SO(4)-action is obvious. The linear
structure is inherited from T ?S4

p1 through the projection map:

π : P � X8.

In particular, π restricts to a diffeomorphism:

π : W
∼−→ T ?p1S

4 ⊂ X8. (3.25)

The latter is a smoothly embedded submanifold of X8 stable under the action of SO(4). The
equivariance of π, implies that W and T ?p1S

4 are isomorphic SO(4)-representations. Since T ?p1S
4

is a vector space, it can be naturally identified with the tangent space at its origin (e.g. by the
exponential map of the underlying additive group). Endowing the latter with the isotropy action,
this identification becomes equivariant. These considerations allow us to view W as the vector
representation of SO(4):

W ∼=
〈
∂y2 , ∂y3 , ∂y4 , ∂y5

〉
. (3.26)

The extendibility problem for invariant tensors is addressed by examining their restrictions along
W . We are thus interested in finding a useful way to describe these restrictions. Pull the bundle

ΛkT ?P ⊗ V

back to W using the inclusion map. Since W is linear, the pullback is trivial. We will now
give a particular trivialization that elucidates the action of SO(4). Using the canonical invariant
connection to decompose TP into vertical and horizontal distributions, we obtain an equivariant
identification:

TP ∼= π?TX8 ⊕ s. (3.27)

Furthermore, there is an obvious SO(4)-equivariant trivialization:

TX8
|π(W )

∼= π(W )×
(
〈X1, ..., X4〉 ⊕

〈
∂y2 , ∂y3 , ∂y4 , ∂y5

〉)
. (3.28)

Putting these together we have:(
ΛkT ?P ⊗ V

)
|W
∼= W ×

(
Λk 〈X1, ..., X4〉? ⊗ V ⊕ Λk

〈
∂y2 , ∂y3 , ∂y4 , ∂y5

〉? ⊗ V ⊕ Λks? ⊗ V
)
.
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3.3 Extendibility of Connections Across the Singular Orbit

Here, the action of SO(4) is as follows: The action on s is trivial. The action on V is obtained
by composing µ and ρ. Finally, the brackets 〈X1, ..., X4〉? and

〈
∂y2 , ∂y3 , ∂y4 , ∂y5

〉? are vector
representations.

We study the restriction of ω along W0: the vector space W punctured at its origin

W0
def
= W − {x1} .

Since tensorial forms vanish on vertical vectors, ω|W0
is a section of the trivial bundle with fiber

equal to:
E

def
= Λk 〈X1, ..., X4〉? ⊗ V ⊕ Λk

〈
∂y2 , ∂y3 , ∂y4 , ∂y5

〉? ⊗ V.
Due to the triviality of the bundle, the form ω|W0

amounts to an SO(4)-equivariant function:

f : W0 → E.

The invariance of ω implies that no information is lost in passing from ω to f . In fact, ω is
determined by the values of f on the reference points xr forming a ray from the origin of W to
infinity. This recovers our usual description of invariant forms as curves in a group representation:

ωr : (1,∞)→ E. (3.29)

Eschenburg and Wang prove that the extendibility of ω is contingent to a representation-theoretic
condition on the formal Taylor series expansion of an appropriate reparameterization of ωr. This
condition reflects the behaviour of f near x1.

The requisite reparameterization is obtained as follows. Using (3.26), the Euclidean metric on
R10 induces an inner product on W . We consider the radial function of the associated norm.
Concretely, we set:

t
def
= R− =

(
r2 − 1

2

) 1
2

, r(t) =
(

2t2 + 1
) 1

2

.

We thus obtain a curve:
γ(t)

def
= ωr(t).

It is clear that f determines γ and vice-versa:

γ(t) = f
(
xr(t)

)
.

The result of Eschenburg and Wang (Eschenburg-Wang [1], Lemma 1.1, p.113) asserts that ω
extends smoothly over the singular orbit if and only if the following hold:

• The curve γ is smooth from the right at t = 0

• The formal Taylor series of γ at t = 0 can be written as:

γ ∼
∑
k≥0

uk

(
x|t=1

)
tk

where:
uk : W → E

is a homogeneous equivariant polynomial of degree k.

Note that we have provided explicit descriptions of the SO(4)-actions on W and E. These descrip-
tions facilitate the computations required for applications.
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3.3 Extendibility of Connections Across the Singular Orbit

3.3.2 Application: Extendibility of Connections

We are interested in studying the extendibility of tensorial forms ω describing connections on P
(relative to the canonical invariant connection). Therefore -in the context of our application- we
have:

S = SO(3), V = so(3) , ρ = AdSO(3), k = 1.

Given our setup, ω will usually be available in the form (3.29). Given this data, we need to pass
to the associated curve γ(t) and express it in a basis of E coming from evaluation of homogeneous
equivariant polynomials at x|t=1

∈ W . To achieve this, we need to be able to find appropriate
equivariant polynomials. This task can be simplified if we understand the relevant representations
in terms of quaternions. To this end, we identify the spaces W and 〈X1, ..., X4〉 with H by:〈

X1, X2, X3, X4
〉
∼= 〈1, i, j, k〉 ∼=

〈
∂y2 , ∂y3 , ∂y4 , ∂y5

〉
.

Furthermore, we lift the action of SO(4) to Sp(1)2 using the covering map πSpin(4). Under these
identifications, the SO(4)-action is captured by the usual spinor representation of Sp(1)2 on H.

General points p ∈W and q ∈ 〈X1, ..., X4〉 can be written as:

p = p0X1 + p1X2 + p2X3 + p3X4, q = q0∂y2 + q1∂y3 + q2∂y4 + q3∂y5

= p0 + p1i+ p2j + p3k = q0 + q1i+ q2j + q3k.

With this choice of coordinates we have:

x|t=1
= 1 ∈ Sp(1) ⊂ H.

The Lie algebra so(3) can be naturally identified with sp(1) = Im (H) using the differential of the
covering map πSpin(3). This identification is Ad-equivariant. Explicitly, it takes the following form:

〈e1, e2, e3〉 ∼=
〈
−k

2
,
j

2
,− i

2

〉
.

These considerations demonstrate that we require homogeneous Sp(1)2-equivariant polynomials:

u : H→ H? ⊗ Im (H)⊕H? ⊗ Im (H)

with prescribed value at x = 1. Separating the components in the target, such maps take the form:

u (x) (p, q) = u1 (x) (p) + u2 (x) (q) .

The Sp(1)2-equivariance condition for u : W → E translates to the following:

u1

(
axb
)

(p) = Adµ◦πSpin(4)(a,b)u1 (x) (apb) for all (a, b) ∈ Sp(1)2, (3.30)

u2

(
axb
)

(q) = Adµ◦πSpin(4)(a,b)u2 (x) (aqb) for all (a, b) ∈ Sp(1)2. (3.31)

The Case of Pπ1

In this case µ = π1. The action of Sp(1)2 on Im (H) is given by projecting the group element to
the first factor and conjugating by the result. Conditions (3.30), (3.31) become:

u1

(
axb
)

(p) = au1 (x) (apb) a for all (a, b) ∈ Sp(1)2,

u2

(
axb
)

(q) = au2 (x) (aqb) a for all (a, b) ∈ Sp(1)2.

Using (3.17), we write a general invariant connection over X8 − S4 as Acan
π1

+ ω, where:

ω = a(r(t))
(
θ2 ⊗ e3 − θ3 ⊗ e2 + θ4 ⊗ e1

)
+
(
b(r(t))− 1

) (
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
.
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3.3 Extendibility of Connections Across the Singular Orbit

The form θ2 ⊗ e3 − θ3 ⊗ e2 + θ4 ⊗ e1 corresponds to:

(p, q) 7→ −1

2

(
p1i+ p2j + p3k

)
= −1

2
Im(p)

=
〈p, 1〉 − p

2
.

Similarly, the form θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1 corresponds to:

(p, q) 7→ − 1

2t

(
q1i+ q2j + q3k

)
= − 1

2t
Im(q)

=
〈q, 1〉 − q

2t
.

Any equivariant polynomial u satisfying:

u (1) (p, q) =
〈p, 1〉 − p

2
(3.32)

has the following restriction on S3 ⊂ H:

u (x) (p) =
〈x, p〉 − px

2
. (3.33)

Similarly, any equivariant polynomial v satisfying:

v (1) (p, q) =
〈q, 1〉 − q

2
(3.34)

has the following restriction on S3 ⊂ H:

v (x) (q) =
〈x, q〉 − qx

2
. (3.35)

As soon as u and v are specified on the unit sphere, they are extended on H by homogeneity. The
extensions depend on the degree d, which is yet unspecified. Given d, we define:

ud (x) (p)
def
=

{
|x|du

(
x
|x|

)
(p) if x 6= 0

0 if x = 0,

vd (x) (p)
def
=

{
|x|dv

(
x
|x|

)
(p) if x 6= 0

0 if x = 0.

The admissible choices of the value of d are constrained. Clearly, we could take d to be 1. This
would correspond to defining u and v by the formulae (3.33) and (3.35) on the whole of H. Other
choices can only arise by multiplying u1 and v1 by powers of the homogeneous degree 2 polynomials
‖p‖2 and ‖q‖2 respectively. We conclude that for each positive integer:

d = 1 + 2k (3.36)

we have precisely one homogeneous equivariant polynomial ud of degree d satisfying (3.32) and
precisely one homogeneous equivariant polynomial vd of degree d satisfying (3.34).

We rewrite the form ω as:

ω = a(r(t)) ud (1) +
b(r(t))− 1

t
vd (1) . (3.37)

Applying the criterion of Eschenburg and Wang we obtain:
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3.3 Extendibility of Connections Across the Singular Orbit

Proposition 3.4. Let A ∈ Ainv (PId) be an invariant connection defined over X8 − S4. Let

ω = a(r(t))
(
θ2 ⊗ e3 − θ3 ⊗ e2 + θ4 ⊗ e1

)
+
(
b(r(t))− 1

) (
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
be the tensorial form expressing A with respect to the canonical invariant connection of Pπ1 . Then
A extends over the singular orbit on Pπ1

if and only if the following hold:

• The function a(r(t)) is smooth from the right at t = 0, odd and O (t).

• The function b(r(t))− 1 is smooth from the right at t = 0, even and O
(
t2
)
.

The Case of Pπ2

In this case µ = π2. The action of Sp(1)2 on Im (H) is given by projecting the group element to
the second factor and conjugating by the result. Conditions (3.30), (3.31) become:

u1

(
axb
)

(p) = bu1 (x) (apb) b for all (a, b) ∈ Sp(1)2,

u2

(
axb
)

(q) = bu2 (x) (aqb) b for all (a, b) ∈ Sp(1)2.

Using (3.18), we write a general invariant connection over X8 − S4 as Acan
π2

+ ω, where:

ω = a(r(t))
(
θ2 ⊗ e3 − θ3 ⊗ e2 + θ4 ⊗ e1

)
+
(
b(r(t)) + 1

) (
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
.

Any equivariant polynomial u satisfying:

u (1) (p, q) =
〈p, 1〉 − p

2
(3.38)

has the following restriction on S3 ⊂ H:

u (x) (p) =
〈x, p〉 − xp

2
. (3.39)

Similarly, any equivariant polynomial v satisfying:

v (1) (p, q) =
〈q, 1〉 − q

2
(3.40)

has the following restriction on S3 ⊂ H:

v (x) (q) =
〈x, q〉 − xq

2
. (3.41)

We thus have precisely one homogeneous equivariant polynomial ud satisfying (3.38) and precisely
one homogeneous equivariant polynomial vd satisfying (3.40) in each degree d = 1 + 2k.

We rewrite the form ω as:

ω = a(r(t)) ud (1) +
b(r(t)) + 1

t
vd (1) . (3.42)

Applying the criterion of Eschenburg and Wang we obtain:

Proposition 3.5. Let A ∈ Ainv (PId) be an invariant connection defined over X8 − S4. Let

ω = a(r(t))
(
θ2 ⊗ e3 − θ3 ⊗ e2 + θ4 ⊗ e1

)
+
(
b(r(t)) + 1

) (
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
be the tensorial form expressing A with respect to the canonical invariant connection of Pπ2

. Then
A extends over the singular orbit on Pπ2

if and only if the following hold:

• The function a(r(t)) is smooth from the right at t = 0, odd and O (t).

• The function b(r(t)) + 1 is smooth from the right at t = 0, even and O
(
t2
)
.
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4 SO(5)-Invariant Instantons with Structure Group SO(3):
Analysis on PId

In the remainder, we will study the invariant Spin(7) instanton and HYM equations on the bundle
PId. The relevant analysis constitutes the heart of the present article.

4.1 The SO(5)-Invariant HYM ODEs on PId

We begin with the HYM equations for which the situation is significantly simpler.

4.1.1 Derivation

A general invariant connection A ∈ Ainv (PId) takes the form (3.10). The associated curvature
tensor FA = F jA ⊗ ej is given in (3.13). The Hodge dual of the Kähler form has been computed in
(2.17). We observe that:

FA ∧ ?gω = 0. (4.1)

Consequently, the HYM equations reduce to (2.15). We write:

FA ∧ Ω =
[
F jA ∧Re (Ω) + iF jA ∧ Im (Ω)

]
⊗ ej .

Using (1.40) and (1.41) we obtain the results:

F 1
A ∧Re (Ω) =

(
R3

+(1− b2)−R+R
2
−(1− a2)

)
θ123456 − 2R+R

2
−ab θ

123567 (4.2)

+
r

2

(
R+(1− b2)−

R2
−

R+
(1− a2)

)
dr ∧ θ23567 + rR+ab dr ∧ θ23456

+

(
rR+

2
b+R3

+

db

dr

)
dr ∧ θ12347 −

(
rR2
−

2R+
b+R+R

2
−
db

dr

)
dr ∧ θ14567

−
(
rR+

2
a+R+R

2
−
da

dr

)
dr ∧ θ12467 +

(
rR+

2
a+R+R

2
−
da

dr

)
dr ∧ θ13457,

F 2
A ∧Re (Ω) =

(
R3

+(1− b2)−R+R
2
−(1− a2)

)
θ123457 − 2R+R

2
−ab θ

124567 (4.3)

+
r

2

(
R+(1− b2)−

R2
−

R+
(1− a2)

)
dr ∧ θ24567 + rR+ab dr ∧ θ23457

−
(
rR+

2
b+R3

+

db

dr

)
dr ∧ θ12346 +

(
rR2
−

2R+
b+R+R

2
−
db

dr

)
dr ∧ θ13567

+

(
rR+

2
a+R+R

2
−
da

dr

)
dr ∧ θ12367 −

(
rR+

2
a+R+R

2
−
da

dr

)
dr ∧ θ13456,

F 3
A ∧Re (Ω) =

(
R3

+(1− b2)−R+R
2
−(1− a2)

)
θ123467 − 2R+R

2
−ab θ

134567 (4.4)

+
r

2

(
R+(1− b2)−

R2
−

R+
(1− a2)

)
dr ∧ θ34567 + rR+ab dr ∧ θ23467

+

(
rR+

2
b+R3

+

db

dr

)
dr ∧ θ12345 −

(
rR2
−

2R+
b+R+R

2
−
db

dr

)
dr ∧ θ12567

−
(
rR+

2
a+R+R

2
−
da

dr

)
dr ∧ θ12357 +

(
rR+

2
a+R+R

2
−
da

dr

)
dr ∧ θ12456,
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4.1 The SO(5)-Invariant HYM ODEs on PId

F 1
A ∧ Im (Ω) =

(
R2

+R−(1− b2)−R3
−(1− a2)

)
θ123567 + 2R2

+R−ab θ
123456 (4.5)

− r

2

(
R2

+

R−
(1− b2)−R−(1− a2)

)
dr ∧ θ23456 + rR−ab dr ∧ θ23567

−
(
rR−

2
b+R2

+R−
db

dr

)
dr ∧ θ12467 +

(
rR−

2
b+R2

+R−
db

dr

)
dr ∧ θ13457

+

(
rR−

2
a+R3

−
da

dr

)
dr ∧ θ14567 −

(
rR2

+

2R−
a+R2

+R−
da

dr

)
dr ∧ θ12347,

F 2
A ∧ Im (Ω) =

(
R2

+R−(1− b2)−R3
−(1− a2)

)
θ124567 + 2R2

+R−ab θ
123457 (4.6)

− r

2

(
R2

+

R−
(1− b2)−R−(1− a2)

)
dr ∧ θ23457 + rR−ab dr ∧ θ24567

+

(
rR−

2
b+R2

+R−
db

dr

)
dr ∧ θ12367 −

(
rR−

2
b+R2

+R−
db

dr

)
dr ∧ θ13456

−
(
rR−

2
a+R3

−
da

dr

)
dr ∧ θ13567 +

(
rR2

+

2R−
a+R2

+R−
da

dr

)
dr ∧ θ13457,

F 3
A ∧ Im (Ω) =

(
R2

+R−(1− b2)−R3
−(1− a2)

)
θ134567 + 2R2

+R−ab θ
123467 (4.7)

− r

2

(
R2

+

R−
(1− b2)−R−(1− a2)

)
dr ∧ θ23467 + rR−ab dr ∧ θ34567

−
(
rR−

2
b+R2

+R−
db

dr

)
dr ∧ θ12357 +

(
rR−

2
b+R2

+R−
db

dr

)
dr ∧ θ12456

+

(
rR−

2
a+R3

−
da

dr

)
dr ∧ θ12567 −

(
rR2

+

2R−
a+R2

+R−
da

dr

)
dr ∧ θ12345.

Observe that there are similarities among the various components. In particular the vanishing of
any one of them is equivalent to the full HYM system. Setting any one of the components to be
zero gives the invariant equations. They are as follows:

da

dr
= − r

2R2
−
, (4.8)

db

dr
= − r

2R2
+

, (4.9)

R2
+(1− b2) = R−(1− a2), (4.10)

ab = 0. (4.11)

Consequently, the invariant HYM connections over PId obey the differential equations (4.8), (4.9)
and satisfy the constraints (4.10), (4.11). Observe that (2.15) involves only the holomorphic volume
form of X8. As a result, the coefficients of the Stenzel metric do not appear in (4.8)-(4.11).

4.1.2 Explicit Solution, Extension to S4 and Decay of the Curvature Norm

The equations (4.8)-(4.11) can be solved explicitly. We obtain precisely two solutions:

AHYMπ1

def
= Acan

Id +
1

R+

(
θ5e3 − θ6e2 + θ7e1

)
, (4.12)

AHYMπ2

def
= Acan

Id −
1

R+

(
θ5e3 − θ6e2 + θ7e1

)
. (4.13)
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4.1 The SO(5)-Invariant HYM ODEs on PId

The notation has been chosen in hindsight to reflect the bundle on which these connections extend.
In particular, using propositions 3.4 and 3.5, we find that AHYMπ1

extends to Pπ1
, while AHYMπ2

extends to Pπ2 . We treat AHYMπ1
in detail. In this case:

a(r(t)) = 0, b(r(t))− 1 =
1−
√
t2 + 1√

t2 + 1
.

The conditions on a(r(t)) are trivially satisfied. The function b(r(t))− 1 is obviously smooth from
the right at t = 0. It is even, since t only appears in power 2. One easily computes that both
b(r(t))− 1 and its first derivative vanish at t = 0. Consequently, b(r(t))− 1 = O(t2).

Using (3.13) we compute the associated curvature tensors:

FAHYMπ1
=

(
θ23 +

R2
−

R2
+

θ56 +
1

R+
θ14 − r

2R3
+

dr ∧ θ7

)
⊗ e1 (4.14)

+

(
θ24 +

R2
−

R2
+

θ57 − 1

R+
θ13 +

r

2R3
+

dr ∧ θ6

)
⊗ e2

+

(
θ34 +

R2
−

R2
+

θ67 +
1

R+
θ12 − r

2R3
+

dr ∧ θ5

)
⊗ e3,

FAHYMπ2
=

(
θ23 +

R2
−

R2
+

θ56 − 1

R+
θ14 +

r

2R3
+

dr ∧ θ7

)
⊗ e1 (4.15)

+

(
θ24 +

R2
−

R2
+

θ57 +
1

R+
θ13 − r

2R3
+

dr ∧ θ6

)
⊗ e2

+

(
θ34 +

R2
−

R2
+

θ67 − 1

R+
θ12 +

r

2R3
+

dr ∧ θ5

)
⊗ e3.

Since both solutions smoothly extend to the singular orbit, we can study their pullbacks. The
connection AHYMπ1

pulls back to the canonical invariant connection of Pπ1
over S4:

ASD
def
= AHYMπ1|

S4

=
(
θ8 + θ7

)
⊗ e1 +

(
θ9 − θ6

)
⊗ e2 +

(
θ10 + θ5

)
⊗ e3. (4.16)

Its curvature is given by:

FASD =
(
θ23 + θ14

)
⊗ e1 +

(
θ24 − θ13

)
⊗ e2 +

(
θ34 + θ12

)
⊗ e3. (4.17)

An explicit calculation yields that ASD is a self dual instanton on S4. This justifies our choice of
notation.

The connection AHYMπ2
pulls back to the canonical invariant connection of Pπ2

:

AASD
def
= AHYMπ2|

S4

=
(
θ8 − θ7

)
⊗ e1 +

(
θ9 + θ6

)
⊗ e2 +

(
θ10 − θ5

)
⊗ e3. (4.18)

Its curvature is given by:

FAASD =
(
θ23 − θ14

)
⊗ e1 +

(
θ24 + θ13

)
⊗ e2 +

(
θ34 − θ12

)
⊗ e3. (4.19)

An explicit calculation yields that AASD is an anti-self-dual instanton on S4. This justifies our
choice of notation.
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4.1 The SO(5)-Invariant HYM ODEs on PId

We wish to endow ad (Pπ1
) with a fiber metric. To this end, it suffices to choose an Ad-invariant

inner product on so(3). In general, the choice of such an inner product is free. However, we shall
choose 〈·, ·〉 so that:

ei ⊥ ej if i 6= j, ‖ei‖2 =
1

2
. (4.20)

This is the unique inner product on so(3) satisfying:

‖ξ‖2 = −Tr
(
ξ2
)
. (4.21)

This identity is required to relate the Yang-Mills energy of instantons to characteristic classes of the
underlying bundle. Using the Stenzel metric and the fiber metric (4.20) we see that the curvature
norms of the two connections have the same constant value on all points of S4:∥∥FASD

∥∥2
=
∥∥FAASD

∥∥2
= 3.

Since the restriction of the Stenzel metric on the singular orbit is round of unit radius, we have:

YM
(
FASD

)
= YM

(
FAASD

)
=

∫
S4

∥∥FASD

∥∥2
dVg

= 3Vol
(
S4
)

(4.22)

= 8π2.

Owing to (4.21), any SO(3)-connection satisfies:

Tr
(
F 2
A

)
=

(∥∥∥F−A ∥∥∥2

−
∥∥∥F+

A

∥∥∥2
)
dVg. (4.23)

Using this result, we see that the self dual SO(3) instantons on S4 have Yang-Mills energy equal
to 8π2 times the integral of the first Pontryagin class of the bundle. Similarly, the ASD instantons
have Yang-Mills energy equal to −8π2 times the integral of the first Pontryagin class. Using (4.22)
we obtain:

p1 (Pπ1
) = 1, (4.24)

p1 (Pπ2
) = −1. (4.25)

We already knew that Pπ1 and Pπ2 are not equivariantly trivial nor equivariantly isomorphic to
each other. The above calculation shows that they are genuinely nonrivial and non-isomorphic
(even if we drop the requirement that the identification be equivariant).

Finally, we determine the radial decay rate of the curvature norm of AHYMπ1
and AHYMπ2

. Since
(4.14) and (4.15) only differ by certain signs, it suffices to treat AHYMπ1

. Using (4.20), (1.46),
(1.47), (1.48), (1.49) and (4.14), we find that:∥∥∥FAHYMπ1

∥∥∥2

= 2
√

3
3r4 + 10r2 + 11

(r2 + 1)
3

(r2 + 2)
1
2

.

In particular, we see that as r →∞: ∥∥∥FAHYMπ1

∥∥∥2

= O(r−3). (4.26)

This decay rate is not sufficient for the Yang-Mills energy to be finite:

YM
(
AHYMπ1

)
=

∫
X8

∥∥∥FAHYMπ1

∥∥∥2

dVg

=

∫
SO(5)
SO(3)

θ1234567

∫ ∞
0

∥∥∥FAHYMπ1

∥∥∥2 r

2
R2

+R
2
−dr

=

√
3

4
Vol

(
SO(5)

SO(3)

)∫ ∞
0

r(r − 1)(r + 1)

(r2 + 1)
2

(r2 + 2)
1
2

(
3r4 + 10r2 + 11

)
dr

= K

∫ ∞
0

O
(
r2
)
dr = +∞.
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4.2 The SO(5)-Invariant Spin(7) Instanton ODEs on PId

4.2 The SO(5)-Invariant Spin(7) Instanton ODEs on PId

4.2.1 Derivation

We consider a general invariant connection A ∈ Ainv (PId) with associated curvature field:

FA = F jA ⊗ ej .

We remind the reader that these take the form (3.10), (3.13). Using (1.50) we compute:

Φ ∧ F 1
A =

(
PQ(1− a2) +

rR+

2
b+R3

+

db

dr

)
dr ∧ θ12347 (4.27)

+

(
PQ(1− b2)−

rR2
−

2R+
b−R+R

2
−
db

dr

)
dr ∧ θ14567

+

(
PQ ab− rR+

2
a−R+R

2
−
da

dr

)
dr ∧ θ12467 +

(
−PQ ab+

rR+

2
a+R+R

2
−
da

dr

)
dr ∧ θ13457

+

(
rR+

2
(1− a2)−

rR2
−

2R+
(1− a2)−Q2 db

dr

)
dr ∧ θ23567 +

(
rR+ab−Q2 da

dr

)
dr ∧ θ23456

+
(
R3

+(1− b2)−R+R
2
−(1− a2)−Q2b

)
θ123456 +

(
−2R+R

2
−ab+Q2a

)
θ123567,

Φ ∧ F 2
A =−

(
PQ(1− a2) +

rR+

2
b+R3

+

db

dr

)
dr ∧ θ12346 (4.28)

+

(
−PQ(1− b2) +

rR2
−

2R+
b+R+R

2
−
db

dr

)
dr ∧ θ13567

+

(
−PQ ab+

rR+

2
a+R+R

2
−
da

dr

)
dr ∧ θ12367 +

(
PQ ab− rR+

2
a−R+R

2
−
da

dr

)
dr ∧ θ13456

+

(
rR+

2
(1− a2)−

rR2
−

2R+
(1− a2)−Q2 db

dr

)
dr ∧ θ24567 +

(
rR+ab−Q2 da

dr

)
dr ∧ θ23457

+
(
R3

+(1− b2)−R+R
2
−(1− a2)−Q2b

)
θ123457 +

(
−2R+R

2
−ab+Q2a

)
θ124567,

Φ ∧ F 3
A =

(
PQ(1− a2) +

rR+

2
b+R3

+

db

dr

)
dr ∧ θ12345 (4.29)

+

(
PQ(1− b2)−

rR2
−

2R+
b−R+R

2
−
db

dr

)
dr ∧ θ12567

+

(
PQ ab− rR+

2
a−R+R

2
−
da

dr

)
dr ∧ θ12357 +

(
−PQ ab+

rR+

2
a+R+R

2
−
da

dr

)
dr ∧ θ12456

+

(
rR+

2
(1− a2)−

rR2
−

2R+
(1− a2)−Q2 db

dr

)
dr ∧ θ34567 +

(
rR+ab−Q2 da

dr

)
dr ∧ θ23467

+
(
R3

+(1− b2)−R+R
2
−(1− a2)−Q2b

)
θ123467 +

(
−2R+R

2
−ab+Q2a

)
θ134567.

We now wish to calculate the Hodge dual of the curvature. We will require the Hodge duals of all
2-forms θij . These can be computed using (1.38) and (2.10). Carrying out this calculation yields:

?gF
1
A =− (1− a2)

PQR2
−

R2
+

dr ∧ θ14567 − (1− b2)
PQR2

+

R2
−

dr ∧ θ12347 (4.30)

+ abPQdr ∧ θ12467 − abPQdr ∧ θ13457

− rQ2

2R2
+

b dr ∧ θ23567 − a rQ
2

2R2
−
dr ∧ θ23456

+
da

dr

2R2
−Q

2

r
θ123567 − db

dr

2R2
+Q

2

r
θ123456,
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4.2 The SO(5)-Invariant Spin(7) Instanton ODEs on PId

?gF
2
A =(1− a2)

PQR2
−

R2
+

dr ∧ θ13567 + (1− b2)
PQR2

+

R2
−

dr ∧ θ12346 (4.31)

− abPQdr ∧ θ12367 + abPQdr ∧ θ13456

− rQ2

2R2
+

b dr ∧ θ24567 − a rQ
2

2R2
−
dr ∧ θ23457

+
da

dr

2R2
−Q

2

r
θ124567 − db

dr

2R2
+Q

2

r
θ123457,

?gF
1
A =− (1− a2)

PQR2
−

R2
+

dr ∧ θ12567 − (1− b2)
PQR2

+

R2
−

dr ∧ θ12345 (4.32)

+ abPQdr ∧ θ12357 − abPQdr ∧ θ12456

− rQ2

2R2
+

b dr ∧ θ34567 − a rQ
2

2R2
−
dr ∧ θ23467

+
da

dr

2R2
−Q

2

r
θ134567 − db

dr

2R2
+Q

2

r
θ123467.

The Spin(7) instanton equations are given by:

?g F
i
A = −Φ ∧ F iA. (4.33)

The set of equations obtained by imposing (4.33) is the same for each i = 1, 2, 3. It is as follows:

da

dr
=

2PQ

R+R2
−
ab− r

2R2
−
a, (4.34)

da

dr
=
rR+

Q2
ab− r

2R2
−
a, (4.35)

db

dr
=

PQ

R2
−R+

(1− b2)− PQ

R3
+

(1− a2)− r

2R2
+

b, (4.36)

db

dr
=
rR+

2Q2
(1− b2)−

R2
−r

2R+Q2
(1− a2)− r

2R2
+

b. (4.37)

This system is overdetermined unless the metric coefficients satisfy the condition:

PQ3 =
r

2
R2

+R
2
−. (4.38)

We recognize this as the SO(5)-invariant Monge–Ampère equation (1.43) distinguishing the Stenzel
metric among the Kähler metrics induced from SO(5)-invariant potentials.

It is useful to work in coordinates compatible with the Eschenburg-Wang analysis. We therefore
switch to the variable t = R−. An elementary calculation shows that the system takes the form:

da

dt
=
Pa
t

(
b− 1

P

)
, (4.39)

db

dt
=
P
2t

(
1− b2

)
− PQ

2

(
1− a2

)
−Qb.

where we have introduced the functions P,Q ∈ C∞ [0,∞) defined by:

P(t)
def
=

√
6
√

2t2 + 2√
2t2 + 3

, (4.40)

Q(t)
def
=

t

t2 + 1
. (4.41)
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4.2.2 Elementary Observations

We begin our analysis of the system (4.39). In this section we make a few elementary observations
about the dynamics. First, we have the following:

Proposition 4.1. The dynamics (4.39) preserve the vanishing of a and correspondingly if a(t) 6= 0
for some t > 0, then a(t) 6= 0 for all t > 0.

Proof. The first statement is trivial. The second follows by the uniqueness part of the standard
Picard theorem.

Next we observe a symmetry in the solution space:

Proposition 4.2. Suppose that the pair (a, b) solves the system (4.39). Then so does (−a, b).

Proof. This follows from a trivial calculation.

We conclude the following: either a = 0 for all time, or a has a fixed sign throughout its lifespan.
Furthermore it suffices to study the case a > 0 as -owing to the above observation- all solutions
(a, b) with a < 0 can be obtained by considering a solution where a > 0 and inverting its sign.

The next proposition establishes that if one solution lies above another at some instant t?, the
inequality persists for all time. Here, ’lying above’ is interpreted componentwise.

Proposition 4.3. Suppose that (a, b), (ã, b̃) are two solutions to the system (4.39). Suppose further
that for some time t? ≥ 0 we have a(t?) > ã(t?) and b(t?) > b̃(t?). These inequalities remain true
for all t ≥ t? for which both solutions exist.

Proof. Suppose not. Let tf be the first time for which the inequality fails. There are three cases:

1. ã(tf ) = a(tf ) and b̃(tf ) = b(tf ),

2. ã(tf ) = a(tf ) and b̃(tf ) < b(tf ),

3. ã(tf ) < a(tf ) and b̃(tf ) = b(tf ).

Case 1 contradicts the uniqueness part of the standard Picard theorem.

Suppose case 2 holds. Consider the evolution of a− ã:

d

dt
(a− ã) =

Pab
t
− a

t
−

(
P ãb̃
t
− ã

t

)
.

At t = tf we have ã(tf ) = a(tf ) = s > 0 and b̃(tf ) < b(tf ). Consequently:

d

dt
(a− ã)|tf

=
Ps
t

(
b(tf )− b̃(tf )

)
> 0.

It follows that ã(t) < a(t) for some time t < tf and the intermediate value theorem contradicts the
fact that tf is the first time for which the inequalities fail.

Suppose case 3 holds. Consider the evolution of b− b̃:

d

dt

(
b− b̃

)
=
P
2t

(
1− b2

)
− PQ

2

(
1− a2

)
−Qb−

(
P
2t

(
1− b̃2

)
− PQ

2

(
1− ã2

)
−Qb̃

)
.

At t = tf we have b̃(tf ) = b(tf ) and ã(tf ) < a(tf ). Consequently:

d

dt

(
b− b̃

)
|tf

=
PQ
2

(
a(tf )− ã(tf )

)
> 0. (4.42)

which leads to a contradiction as above.
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Proposition 4.4. Suppose that (a, b) is a solution of (4.39) defined in a neighbourhood of t0 > 0.
Take initial data at t0 satisfying a(t0) > 0, b(t0) < 0 and flow backwards. Then a → +∞ as
t→ tblowup ≥ 0.

Proof. We will bound a from below by a function v satisfying v → +∞ as t→ 0.

Consider the evolution of the product ab. Using the equations (4.39), compute:

d

dt
(ab)|t =

.
ab+ a

.
b

=
P

2t
ab2 +

P
2t (t2 + 1)

a+
PQ
2
a3 −

(
Q+

1

t

)
ab > −

(
Q+

1

t

)
ab, (4.43)

where in the last line we used the fact that a > 0 for all time. By comparison, flowing backwards
in time, ab stays below the solution of the I.V.P:{ .

u(t) = −
(
Q+ 1

t

)
v,

u(t0) = a(t0)b(t0).

By assumption, the initial data satisfy:

a(t0)b(t0) < 0.

Consequently, u < 0 for all 0 < t < t0 and we conclude that the same is true of ab.

This allows us to estimate:
.
a(t) =

Pab
t
− a

t
< −a

t
.

Consequently, a lies above the solution to the following I.V.P backwards of t0:{ .
v(t) = −vt ,
v(t0) = a(t0).

This is easily solved explicitly and we obtain the inequality:

a(t) ≥ a(t0)t0
t

for all 0 < t ≤ t0.

Corollary 4.5. Let T > 0 and let (a, b) ∈ C1[0, T ] be a solution of (4.39) satisfying a 6= 0. We
have that b(t) > 0 for all t ≥ 0 for which the solution exists.

Proof. Trivially, b(0) = ±1. If not, then
.
b(t) blows up as t → 0. Hence it suffices to prove the

result for t > 0. If we achieve this, the possibility that b(0) = −1 is excluded by continuity and
thus we have that b(0) = 1.

Suppose that for some t0 > 0, b(t0) < 0. We have that a(t0) 6= 0 by assumption. If a(t0) > 0, the
above proposition implies that a blows up to +∞ near t = 0 contradicting the boundedness of the
solution. If a(t0) < 0, then −a(t0) > 0. Since (−a, b) is a solution, −a blows up to +∞ near t = 0.
Hence, a blows up to −∞ near t = 0.

Suppose that b(t0) = 0 for some t0 > 0. At such a point we have:

.
b(t0) =

P(t0)

2t0(t20 + 1)
+
P(t0)Q(t0)

2
a2(t0) > 0.

It follows that b(t) < 0 for some 0 < t < t0 and this brings us to the previous case.

Putting the above together: if (a, b) is a global solution of 4.39, either a = 0 identically or the sign
of a is fixed and b > 0.
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4.2.3 Solutions Extending on Pπ2
: An Explicit Family of Spin(7)-Instantons Contain-

ing a Unique HYM Connection

We classify the solutions that extend on Pπ2
. In the division suggested in the final remark of the

preceding subsection, this corresponds to the case a = 0. The system (4.39) reduces to a single
nonlinear ODE that we can solve explicitly. We thus exhibit an explicit 1-parameter family of
Spin(7) instantons only one of which is HYM. This resolves (negatively) the question regarding
the equivalence of the two gauge theoretic problems.

Owing to proposition 3.5, solutions extending to Pπ2
must satisfy b(0) = −1. Due to corollary

4.5,the a-component of such a solution must vanish identically. The system (4.39) reduces to the
following ODE:

db

dt
= −PQ

2
+
P
2t

(
1− b2

)
−Qb. (4.44)

This can be solved explicitly. We fix a positive reference time and parameterize solutions by their
value at that time. We choose to work with tref =

√
6

2 (corresponding to rref = 2). This choice is
arbitrary. Note that our approach excludes solutions blowing up at tref. This is not an issue as
we are only interested in global instantons. Writing: ν = b (tref), the associated solution to (4.44)
takes the form:

bν(t) =

√
2

2

1 +

√
6− ν

√
10t2 + 15

√
30ν +

√
6−

(√
5ν + 2

)√
2t2 + 3

 1√
t2 + 1

. (4.45)

Corresponding to bν there is a local Spin(7) instanton (3.18) on the restriction of PId over an open
submanifold of the form:

(tref − δ, tref + δ)× SO(5)

SO(3)
⊂ X8. (4.46)

An elementary calculation yields the values of ν for which there exists a finite blowup time:

Proposition 4.6. Let ν ∈ (−∞,− 2
√

5
5 ) ∪ (

√
10
5 ,∞). The connection Aν blows up (as witnessed

-for instance- by a blowup of the pointwise curvature norm) at time tblowup(ν) given by:

tblowup(ν) =

√
6

2

√
5ν2 − 2√
5ν + 2

. (4.47)

For ν outside of the range considered in the proposition, the solutions stay bounded for all time.
These considerations lead to the following existence/classification result:

Theorem 4.7. Let ν ∈ [− 2
√

5
5 ,

√
10
5 ). The connection Aν is a smooth Spin(7) instanton on the

extended bundle Pπ2
. Furthermore, these are all the invariant Spin(7) instantons on Pπ2

.

Proof. For ν ∈ [− 2
√

5
5 ,

√
10
5 ], the function bν is of class C∞[0,∞). We need to verify the extension

conditions of proposition 3.5. In particular we need to prove that bν(t) + 1 is even and O(t2)

at t = 0. We immediately exclude ν =
√

10
5 as the associated solution satisfies b(0) = 1 and

consequently fails the second extension condition. For ν ∈ [− 2
√

5
5 ,

√
10
5 ), the first condition is clear

by looking at the formula for bν . The second condition is easily established by computing that:

bν(0) + 1 =
.
b(0) = 0. (4.48)

For uniqueness, we note that any invariant Spin(7) instanton on Pπ2 obeys 4.44 and all other
solutions of this equation blow up.

The HYM connection AHYMπ2
lies in the interior of this family and corresponds to the choice

ν = −
√

10
5 . It is the only HYM connection in the family. The boundary point ν∂ = − 2

√
5

5
corresponds to the solution:

bν∂ (t) = −
√

3

3

√
2t2 + 3√
t2 + 1

. (4.49)
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The associated Spin(7) instanton Aν∂ differs from the others in that it yields a different limiting
connection on PId over the Stiefel manifold SO(5)

SO(3) at infinity. In particular, for ν ∈
(
− 2
√

5
5 ,

√
10
5

)
it is easily seen that:

lim
t→∞

bν(t) = 0.

The associated limiting connection is therefore equal to Acan
PId

. However, for ν = ν∂ , we have:

lim
t→∞

bν∂ (t) = −
√

6

2
.

and the associated connection at infinity is given by:

A∞ν∂ = Acan
PId
−
√

6

2

(
θ5 ⊗ e3 − θ6 ⊗ e2 + θ7 ⊗ e1

)
.

We have already computed the pointwise curvature norm of AHYMπ2
. Its growth is of order O(r−

3
2 ).

The rate remains the same across all elements of the family. This includes the boundary point
Aν∂ . It follows that it is possible for Spin(7) instantons not to be HYM and yet to have pointwise
curvature norm decaying with the same rate as that of an HYM connection on the same bundle.

4.2.4 Solutions Extending on Pπ1

We now wish to classify solutions that smoothly extend over Pπ1
. In the previous section we found

all solutions where a = 0. The only one satisfying b(0) = 1 corresponds to ν =
√

10
5 . The associated

instanton is AHYMπ1
. Any other solution would have nonvanishing a-component. Consequently,

we have to deal with the full system (4.39). The first step is to obtain short time existence and
uniqueness near the pole of the ODE. Subsequently, the task is to characterize which of these local
solutions survive for all time to yield global Spin(7) instantons.

4.2.4.1 Short Time Existence and Uniqueness
The analysis in this section relies on the method of Eschenburg and Wang (Eschenberg, Wang [1],
section 6). We have adapted their existence result to our equation system and refined it to include
continuous dependence on initial data. This does not follow from the standard Grönwall estimate as
the I.V.P under consideration is singular. The continuity proof is based on the technique employed
by Smoller, Wasserman, Yau and McLeod (Smoller, Wasserman, Yau, McLeod [2], p.147]).

Theorem 4.8. Let a0 be a fixed real number. There exists a unique solution:

(a, b)a0 ∈ C
∞[0, tmax(a0))

to the system 4.39 such that:

a(0) = 0, (4.50)
.
a(0) = a0, (4.51)
b(0) = 1. (4.52)

This solution satisfies the extension conditions of proposition 3.4 and thus yields a Spin(7) instan-
ton on the restriction of Pπ1 over the open submanifold defined by 0 ≤ t < tmax(a0).

Furthermore, we have that for any K > 0:

TK
def
= inf

{
tmax(a0) | a0 ∈ [−K,K]

}
> 0 (4.53)

and the following mapping is continuous:

[−K,K]→ C0
(

[0, TK ],R2
)
,

a0 7→ (a, b)a0 . (4.54)
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We will prove this result in four stages. The first step is to study the formal Taylor series of smooth
solutions at t = 0. The second step is to derive and analyze ODEs governing perturbations of high
order polynomial truncations of the series. The idea is to show that, if the order is high enough,
the resulting ODEs are uniquely soluble for sufficiently short time in suitable Banach spaces. The
third step is to argue that the solutions so obtained are smooth and have the correct formal series
at t = 0. The final step is to understand how this existence/ uniqueness argument behaves under
change of initial data. This involves proving that the estimates can be made to be uniform in a0

for a0 in compact sets and establishing the desired continuity result.

Proposition 4.9. Fix a0 ∈ R. There exists a unique (a, b)a0 ∈ R[[t]]2 solving the system (4.39)
and satisfying the conditions (4.50), (4.51), (4.52). Here, differentiation is understood in the
formal sense (as a derivation of the formal power series ring).

Proof. Considering the ODEs governing a(−t) and b(−t) and invoking local uniqueness, we find
that b is even and a is odd. This allows us to write:

a =

∞∑
k=0

ak
(2k + 1)!

t2k+1, b =

∞∑
k=0

bk
(2k)!

t2k, where b0 = 1. (4.55)

Using the parity of a, b and the coefficient functions, we introduce the series:

a (Pb− 1) =

∞∑
k=0

ck
(2k + 1)!

t2k+1,
PQ
2

(
1− a2

)
=

∞∑
k=0

ek
(2k + 1)!

t2k+1,

P
2

(
1− b2

)
=

∞∑
k=0

dk
(2k)!

t2k d0 = 0, Qb =

∞∑
k=0

fk
(2k + 1)!

t2k+1.

The ODE for a translates to the condition:

ak =
ck

2k + 1
for all k ≥ 0. (4.56)

We compute ck in terms of a0, ..., ak, b0, ..., bk. This yields:

ck =
d2k+1

dt2k+1 |t=0

(
a(Pb− 1)

)
,

= ak + G(a0, ..., ak−1, b0, ..., bk).

Here G denotes some function of coefficients of lower order. We will slightly abuse notation and
maintain use of the symbol G in subsequent calculations -even though the particular function may
not be the same. Using (4.56) we obtain:

2k

2k + 1
ak = G(a0, ..., ak−1, b0, ..., bk). (4.57)

This determines ak in terms of coefficients of lower order provided that k 6= 0. We conclude that
we are allowed to choose a0 freely.

We perform a similar calculation for b. The second equation in (4.39) translates to the relation:

bk+1 =
dk+1

2k + 2
− ek − fk for all k ≥ 0. (4.58)

We note that ek and fk only involve terms depending on a0, ..., ak, b0, ..., bk and it is thus unnec-
essary to compute them. We compute dk+1 in terms of a0, ..., ak, b0, ..., bk+1:

dk+1 =
d2k+2

dt2k+2 |t=0

(
P
2

(1− b2)

)
,

= −2bk+1 + G(b0, ..., bk).

Using (4.58), we obtain:
k + 2

k + 1
bk+1 = G(a0, ..., ak, b0, ..., bk).

It follows that bk+1 is determined by lower order coefficients for each k ≥ 0.

The above calculations demonstrate that the formal Taylor series at 0 is uniquely determined by
induction given a choice of a0 ∈ R.
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Although the content of the preceding proposition is enough for the purposes of our existence
theorem, continuity requires more refined knowledge of the formal Taylor series. In particular, we
are interested in the dependence of its coefficients on a0. We explicitly calculate the first few terms
of the series associated to some fixed a0:

a(t) = a0t−
a0

3
t3 +O(t5), (4.59)

b(t) = 1− t2

2
+

(
3

8
+
a2

0

6

)
t4 +O(t6). (4.60)

In fact, we are able to obtain the following:

Proposition 4.10. The coefficients of the formal Taylor series (a, b)a0 are polynomials (possibly
of order 0) in a0.

Proof. This is certainly true for a0, b0 and b1. Repeating the calculations of the preceding propo-
sition, but keeping track of the lower order terms yields the following recurrence relations for the
coefficients:

ak =
1

2k

k∑
m=1

m∑
l=0

(
2k + 1

2m

)(
2m

2l

)
P(2(m−l))
|t=0

ak−m bl,

bk+1 = − 1

4k + 8

k∑
m=1

m∑
l=0

(
2k + 2

2m

)(
2m

2l

)
P(2(k−m)+2)
|t=0

bm−l bl −
1

2k + 4

k∑
l=1

(
2k + 2

2l

)
bk+1−l bl

− k + 1

2k + 4
(PQ)

(2k+1) ||t=0
+

k + 1

2k + 4

k∑
m=1

m−1∑
l=0

(
2k + 1

2m

)(
2m

2l + 1

)
(PQ)(

2(k−m)+1) ||t=0
am−l−1 al

− k + 1

k + 2

k∑
m=0

(
2k + 1

2m

)
Q(2(k−m)+1)||t=0

bm.

The result follows by induction.

We now discuss how to use this formal series in order to obtain an honest solution of the system
(4.39). For ease of exposition, we introduce the following functions:

F1(t, u, v)
def
= u

(
P(t) v − 1

)
,

F2(t, v)
def
=
P(t)

2
(1− v2),

F3(t, u, v)
def
= −P(t) Q(t)

2
(1− u2)−Q(t) v.

We rewrite the ODE system (4.39) as:

da

dt
=
F1 (t, a, b)

t
,

db

dt
=
F2 (t, b)

t
+ F3 (t, a, b) .

Further, we let pam(t, a0), pbm(t, a0) denote the order m Taylor polynomials corresponding to the
initial data a0. These are obtained by truncating the respective series. We also introduce the
following error functions capturing the failure of the Taylor polynomials to solve (4.39):

Eam(t, a0)
def
=

d

dt
pma (t, a0)−

F1

(
t, pam(t, a0), pbm(t, a0)

)
t

,

Ebm(t, a0)
def
=

d

dt
pmb (t, a0)−

F2

(
t, pbm(t, a0)

)
t

− F3(t, pam(t, a0), pbm(t, a0)).

They are smooth and O(tm) at t = 0. To see this, recall that the full formal series was constructed
by matching derivatives at the origin. Consequently, the firstm−1 derivatives of the error functions
vanish at t = 0.
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We now introduce the Banach spaces we will be working with. We define:

OT (m)
def
=

{
f ∈ C0[0, T ] s.t. sup

t∈[0,T ]

|f(t)|
tm

<∞

}
, (4.61)

‖f‖OT (m)
def
= sup

t∈[0,T ]

|f(t)|
tm

.

We immediately observe that the error functions Eam, Ebm lie in this space (they are O(tm)). Fur-
thermore, the functions pam, pbm − 1 lie in O(1). In fact -in light of proposition (4.10)- we have:

Corollary 4.11. Eam(t, ·), Ebm(t, ·) define continuous mappings from the space of initial data into
O(m). Similarly, pam(t, ·), pbm(t, ·) − 1 define continuous mappings from the space of initial data
into O(1).

We finally recast the problem as an integral equation for a perturbation of the polynomials (pam, p
b
m).

Given a pair of functions (u, v) ∈ O⊕2
T (m) we define:

Θ1
m,a0 (u, v) (s)

def
=

∫ s

0

(
F1

(
t, pam(a0, t) + u(t), pbm(a0, t) + v(t)

)
t

− .
pam(a0, t)

)
dt,

Θ2
m,a0 (u, v) (s)

def
=

∫ s

0

(
F2

(
t, pbm(a0, t) + v(t)

)
t

+ F3(t, pam(a0, t) + u(t), pbm(a0, t) + v(t))− .
pbm(a0, t)

)
dt.

It can be easily checked (by expanding out the integrands, counting order of vanishing and noting
that integration raises this by one) that we obtain a nonlinear integral operator:

Θm,a0
def
= Θ1

m,a0 ×Θ2
m,a0

: O⊕2
T (m)→ O⊕2

T (m). (4.62)

The following proposition is the heart of the matter:

Proposition 4.12. Let a0 be fixed. Fix R > 0. For sufficiently largem (depending on F1, F2, F3, R)
and sufficiently small T (depending on m and a0), the operator Θm,a0 has a unique fixed point (u, v)
in BR(0) ⊂ O⊕2

T (m). Furthermore, this fixed point is smooth in [0, T ] and the associated solution

(a, b)
def
= (pam + u, pbm + v)

to the system (2.9) satisfies (4.50), (4.51), (4.52).

Proof. In what follows, our notation suppresses dependence on a0. Fix R > 0. We will select m
and T such that Θm is a contraction on BR(0) ⊂ O⊕2

T (m).

Consider the domain:
DR

def
= [0, 1]×B2R(0, 1) ⊂ R3. (4.63)

Let L > 0 be a Lipschitz constant in the (u, v) variables for the restrictions of F1, F2, F3 on DR. L
is controlled by L∞ bounds on the restrictions of the derivatives of the Fi on DR. Choose:

m > max {2L, 1} .

Pick T such that:

T < min

1,
(m+ 1)R

‖Eam‖O1(m) +
∥∥Ebm∥∥O1(m)

,
R

‖pam‖O1(m)

,
R∥∥pbm − 1
∥∥
O1(m)

 .

Clearly, for t ∈ [0, T ] we have:

|pam(t)| ≤ R, |pbm(t)− 1| ≤ R. (4.64)

Claim that we also have: ∥∥Θm(0, 0)
∥∥
OT (m)

≤ R

2
. (4.65)
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To see this, we estimate as follows:∥∥Θm(0, 0)
∥∥
OT (m)

=
∥∥∥Θ1

m(0, 0)
∥∥∥
OT (m)

+
∥∥∥Θ2

m(0, 0)
∥∥∥
OT (m)

=

∥∥∥∥∫ r

0

Eam(t)dt

∥∥∥∥
OT (m)

+

∥∥∥∥∫ r

0

Ebm(t)dt

∥∥∥∥
OT (m)

≤ sup
r∈[0,T ]

1

rm

∫ r

0

|Eam(t)|dt+ sup
r∈[0,T ]

1

rm

∫ r

0

|Ebm(t)|dt

≤ sup
r∈[0,T ]

‖Eam‖OT (m)

rm

∫ r

0

tmdt+ sup
r∈[0,T ]

∥∥Ebm∥∥OT (m)

rm

∫ r

0

tmdt

≤ sup
r∈[0,T ]

‖Eam‖OT (m)

m+ 1
r + sup

r∈[0,T ]

∥∥Ebm∥∥OT (m)

m+ 1
r

≤
‖Eam‖OT (m) +

∥∥Ebm∥∥OT (m)

(m+ 1)
T ≤ R

2
. (4.66)

We now prove contraction estimates for Θ1
m and Θ2

m. Fix 0 ≤ r ≤ T and compute:∣∣∣Θ1
m(u, v)(r)−Θ1

m(ũ, ṽ)(r)
∣∣∣ ≤ ∫ r

0

1

t

∣∣∣∣F1

(
t, pam + u, pbm + v

)
− F1

(
t, pam + ũ, pbm + ṽ

)∣∣∣∣ dt
≤
∫ r

0

L

t

(
|u− ũ|+ |v − ṽ|

)
dt

≤ L
(
‖u− ũ‖OT (m) +‖v − ṽ‖OT (m)

)∫ r

0

tm−1dt

≤ Lrm

m

(
‖u− ũ‖OT (m) +‖v − ṽ‖OT (m)

)
.

In this calculation, the L-Lipschitz estimate is valid due to (4.64) and the fact that the uniform
norm is controlled by the OT (m) norm when 0 < T < 1. We conclude that:∥∥∥Θ1

m(u, v)−Θ1
m(ũ, ṽ)

∥∥∥
OT (m)

≤ L

m

(
‖u− ũ‖OT (m) +‖v − ṽ‖OT (m)

)
. (4.67)

A similar calculation yields:∥∥∥Θ1
m(u, v)−Θ1

m(ũ, ṽ)
∥∥∥
OT (m)

≤
(
L

m
+

LT

m+ 1

)
‖v − ṽ‖OT (m) +

LT

m+ 1
‖u− ũ‖OT (m)

≤ 1

2

(
‖u− ũ‖OT (m) +‖v − ṽ‖OT (m)

)
. (4.68)

Due to (4.65), (4.67) and (4.68), the closed R-ball in O⊕2
T (m) is stable under Θ. The contraction

mapping theorem (CMT) yields a unique fixed point (u, v) in this ball.

This fixed point is necessarily of class C1[0, T ] (by the fundamental theorem of calculus). Conse-
quently (a, b) is C1 and it therefore constitutes an honest solution of (4.39) on [0, T ]. Considering
the order of vanishing of u at 0 and looking at the equations, we observe that .u(t) = O(tm−1).
Conditions (4.50), (4.51), (4.52) follow.

Full regularity follows by a simple bootstrap procedure. Since flows of smooth (non-autonomous)
vector fields are smooth, (u, v) is smooth in (0, T ]. The task is to establish smoothness at 0.
Smoothness in (0, T ] legitimizes differentiation of the equations for t > 0. This gives an expression
for the second derivatives of u and v involving terms in u

t2 ,
v
t2 ,

.
u
t and

.
v
t . It is thus clear that

u(2)(t), v(2)(t) → 0 as t → 0. Hence u, v are of class C2[0, T ] with vanishing second derivative
at 0. We can iterate this argument to conclude that u, v are of class Cm−1[0, T ] with vanishing
derivatives at 0 up to order m−1. The only constraint on m required for the contraction argument
to run is m > max {2L, 1}. It follows that the operator Θl is a contraction for arbitrarily large
l > m (perhaps for shorter time T ). Fixing l > m, we let (ul, vl) be the associated fixed point.
Repeating the argument above, it lies in Cl−1[0, T ] with vanishing derivatives up to order l− 1. It
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is thus O(tm+1). It follows that (ul + pal − pam, vl + pbl − pbm) is also O(tm+1). Consequently -by
further decreasing T as necessary- we can arrange that the latter has as small O⊕2

T (m) norm as we
like. In particular, we take this to be less than R. Furthermore, (ul + pal − pam, vl + pbl − pbm) is a
fixed point of Θm. But Θm has a unique fixed point in the closed R-ball. It follows that:

(u, v) = (ul + pal − pam, vl + pbl − pbm) (4.69)

and hence that u, v lie in Cl−1. Since l was arbitrary, the proof is complete.

We now have enough for the first part of theorem 4.8. The preceding proposition guarantees the
existence of a smooth solution (a, b) satisfying (4.50), (4.51), (4.52). The algebraic calculation in
the start of this section uniquely specifies its full formal Taylor series at t = 0 so that it passes the
extension criterion in proposition 3.4. Finally, suppose that there is another smooth solution (ã, b̃)
satisfying (4.50), (4.51), (4.52). Arguing as above, we find that the two solutions share the same
formal Taylor series at 0 (the series discovered in proposition 4.9). Let m be as in proposition
4.12. We have that (a− pam, b− pbm), (ã− pam, b̃− pbm) are O(tm+1). For short enough time T , the
O⊕2
T (m) norms of these functions are less than R. Since both functions are fixed points of Θm and

lie in the closed R-ball, they are equal. Hence (a, b) = (ã, b̃).

It remains to study the dependence of solutions on variations of the initial data a0. We immediately
obtain:

Proposition 4.13. Fix K > 0. We have:

TK = inf
{
tmax(a0) | a0 ∈ [−K,K]

}
> 0.

Proof. In our existence proof, once, R,L,m are fixed, T needs to be controlled from above by
quantities decreasing with the O1(m) norms of the error functions and the O1(1) norms of pam, pbm−
1. By corollary 4.11, these norms depend continuously on a0 and are hence bounded for a0 in a
compact set. It follows that we can choose T small enough so that the contraction argument works
for all a0 ∈ [−K,K].

Note that the contraction constant can be taken to be the same across all a0 ∈ [−K,K]. This is
vital for the continuity proof, which we now discuss.

Proposition 4.14. The mapping defined by:

[−K,K]→ C0
(

[0, TK ],R2
)

a0 7→ (a, b)a0 (4.70)

is continuous.

Proof. Consider the trivial (infinite-rank) vector bundle over [-K,K]:

E
def
= [−K,K]×O⊕2

TK
(m).

The following map is fiber-preserving and continuous:

S : E → E,(
a0, (u, v)

)
7→
(
a0,Θm,a0(u, v)

)
.

There is a unique section s of E that is fixed by S (the one assigning to each choice of initial data
the associated fixed point of Θa0,m). The task is to prove that s is continuous. To this end, we fix
x ∈ [−K,K] and prove that s is continuous at x. Fix ε > 0 and define the following (continuous)
section of E:

ux(a0)
def
= (a0, s(x)).

We will run the CMT iteration on each fiber with initial condition determined by ux. Letting
0 < C < 1 be the contraction constant of Θa0,m and using the convergence rate estimate of the
CMT we have:∥∥∥ΘN

m,a0(ux(a0))− s(a0)
∥∥∥
OTK (m)⊕2

≤

∥∥Θm,a0(ux(a0))− ux(a0)
∥∥
O⊕2
TK

(m)

1− C
CN

≤ 2R

1− C
CN . (4.71)
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Fix N large enough so that this quantity is controlled by ε
2 . Since S and u are continuous, we

have:
lim
a0→x

SNux(a0) = SNux(x) = (x, s(x)).

Consequently, for a0 sufficiently close to x, we can achieve:∥∥∥ΘN
m,a0

(
ux(a0)

)
− s(x)

∥∥∥
O⊕2
TK

(m)
<
ε

2
.

Using (4.71), (4.72) and the triangle inequality completes the proof.

Uniqueness implies that the solution associated to a0 = 0 corresponds to AHYMπ1
. This instanton

will play a central role in the analysis of the global properties of the system.

4.2.4.2 Global Existence for Small Initial Data
The previous section yields a characterization of short-time solutions near the pole. We are now
tasked with understanding which of these solutions are global. In this section we establish that:

Theorem 4.15. There exists an ε > 0 such that for |a0| < ε, the short time solutions of theorem
4.8 are global.

The heart of the argument lies in the following proposition. Its conditions are subsequently easily
verified (for small initial data) by a continuity argument.

Proposition 4.16. Suppose that a0 > 0 and let (a, b)a0 be a solution to the system (4.39) such
that a attains a critical point in the spacetime region:

t >

√
6

2
√

1− 2a2
. (4.72)

Then tmax(a0) = +∞.

Proof. By proposition 4.1, a(t) > 0 for all 0 < t < tmax(a0). Looking at the ODE for a, we conclude
that the critical points of a are precisely the points where b = P−1. We seek an expression for the
second derivative of a at a critical point occurring at time t = tcrit > 0. Differentiating the ODE
for a and setting b = P−1, we obtain:

d2a

dt2 |t=tcrit
=

3 a (tcrit)

2t2crit
(
2t2crit + 3

) [(4 a (tcrit)
2 − 2

)
t2crit + 3

]
. (4.73)

The first factor is strictly positive. Consequently, the nature of the critical point depends on the
sign of:

F (t, a)
def
=
(

4a2 − 2
)
t2 + 3 (4.74)

at
(
tcrit, a (tcrit)

)
. For (t, a) in the spacetime region 4.72, we have F (t, a) < 0. Hence, any critical

point occurring in the region is a maximum.

Suppose that a maximum does occur inside the region (4.72). For a short amount of time thereafter
a is decreasing. The only way that a can ever increase again is if it reaches a minimum. A minimum
can only occur if (t, a(t)) exits the spacetime region (4.72). For this to occur, a has to increase.
It follows that a decreases for as long as the solution survives. Consequently a is bounded from
above. Since a > 0, it follows that a is also bounded from below. Since a consistently decreases
after the maximum point, we have that b(t) < P(t)−1 for t > tcrit. By corollary 4.5, b > 0 for all
time. Hence both a and b are bounded and thus survive for all time t ≥ 0.

Proposition 4.16 applies provided that the initial data is small enough:

Proposition 4.17. There exists ε > 0 such that if 0 ≤ a0 < ε, then aa0 attains a critical point in
the spacetime region (4.72).
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Proof. The idea is to use a continuity argument and compare with the solution corresponding to
a0 = 0:

aHYM(t) = 0, bHYM(t) =
1√
t2 + 1

.

Note that P(0) = 2 and b(0) = 1 (independently of the choice of a0). Hence b always starts above
P−1. For a0 = 0, the solution bHYM crosses P−1 at the time: t = 3

√
2

2 . For a0 > 0, formulae (4.59)
and (4.60) show that -at least for a very short time- to the right of t = 0 we have

(a, b) > (aHYM, bHYM) (4.75)

where the inequality is understood componentwise. By proposition 4.3, this inequality persists
for as long as the solutions exist. Consequently, if a0 > 0, ba0 can only cross P−1 strictly after
t = 3

√
2

2 .

Consider only |a0| ≤ 1. By the second assertion of theorem 4.8, the maximal existence time of
the resulting solutions is bounded below by a positive number T1. Furthermore, these solutions
depend continuously on a0 (in the C0[0, T1] norm). Composing with the local flow associated to
taking initial conditions at t = T1, we see that the maximal existence time is lower semicontinuous
in a0. Furthermore, we see that if a particular choice of a0 yields a solution surviving past some
time t = T , the mapping sending initial conditions to their associated solutions is continuous from
an open neighbourhood of a0 into C0[0, T ].

Since (aHYM, bHYM) (associated to a0 = 0) is global, initial data close to 0 lead to solutions that
survive arbitrarily long. In particular, we can choose ε > 0 to be small enough so that solutions
associated to 0 < a0 < ε survive past t = 4. Furthermore -at the expense of taking ε to be even
smaller- we can appeal to continuity to arrange that:

sup
t∈[0,4]

∣∣aa0(t)
∣∣ < 1

2
, (4.76)

sup
t∈[0,4]

∣∣∣∣ba0(t)− 1√
t2 + 1

∣∣∣∣ < 1

2
inf

t∈[3,4]

∣∣∣∣ 1√
t2 + 1

− 1

P(t)

∣∣∣∣ . (4.77)

Condition (4.76) implies that for any
√

3 < t ≤ 4 the point (t, a(t)) lies in the spacetime region
(4.72). Condition (4.77) implies that for any 3 ≤ t ≤ 4 we have:

ba0(t) <
1

P(t)
.

By the intermediate value theorem, there exists a 0 < tcrit < 3 where ba0 crosses P−1. But we
have seen that this time must be after t = 3

√
2

2 and consequently after t =
√

3. Hence, the critical
point at t = tcrit occurs in the spacetime region (4.72).

Theorem 4.15 easily follows from the preceding two propositions and the symmetry of the system
(4.39) -as formulated in proposition 4.2-.

Proof. [of Theorem 4.15] Proposition 4.17 yields a threshold ε > 0 such that for any 0 ≤ a0 < ε,
the a component of the associated solution attains a critical point in the region (4.72). Proposition
4.16 then implies that (a, b)a0 is global. Finally, proposition 4.2 proves that solutions associated
to −ε < a0 ≤ 0 are global too.

4.2.4.3 Finite Time Blowup for Large Initial Data
We now wish to study the development of large initial data. We will obtain the following:

Theorem 4.18. Suppose that:

|a0| >
1

2 arctanh
(

1
2

) .
Then (a, b)a0 blows up in finite time at most equal to:

tblowup (a0)
def
=

3
√

2

2

(
1− tanh2

(
1

2|a0|

)) 1
2

1− 2 tanh
(

1
2|a0|

) . (4.78)
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Furthermore, the blowup set:

Sblowup
def
=
{
a0 ∈ R s.t. (a, b)a0 blows up in finite time

}
(4.79)

is of the form:
Sblowup = (−∞,−x) ∪ (x,∞) (4.80)

for some 0 < x ≤ 1

2 arctanh( 1
2 )
.

Our analysis relies on an apriori bound on b
a :

Proposition 4.19. For any a0 ≥ 0, the solution (a, b)a0 satisfies the following inequality for all
0 ≤ t < tmax(a0):

b(t) >
t

2
√
t2 + 1

a(t). (4.81)

Proof. 4.81 is clearly satisfied at t = 0. To show that it persists for as long as solutions survive,
we let t? be any time such that:

b(t?) =
t?

2
√
t2? + 1

a(t?)

and we compute:

d

dt |t=t?

(
b(t)− t

2
√
t2 + 1

a(t)

)
=
√

6
b(t?)

2 t2? + b(t?)
2 + 1

t?
√

2t2? + 2
√

2t2? + 3
> 0. (4.82)

Proposition 4.19 allows us to estimate:

.
a =
Pa
t

(
b− 1

P

)
>
Pa
t

(
ta

2
√
t2 + 1

− 1

P

)
. (4.83)

Fix a reference time t0. Estimate (4.83) implies that -past t0- a is bounded below by the solution
of the following I.V.P. of Riccati type:

.
u(t) = u(t)

( √
3√

2t2+3
u(t)− 1

t

)
,

u(t0) = a(t0).
(4.84)

Setting x0
def
= a(t0), equation (4.84) can be solved explicitly to give:

ut0,x0
(t) =

t0x0

t

(
t0x0 arctanh

( √
3√

2t2+3

)
− t0x0 arctanh

( √
3√

2t20+3

)
− 1

) . (4.85)

The task is now to determine conditions on t0, x0 such that the function ut0,x0 blows up in finite
time. An elementary calculation demonstrates that the denominator of (4.85) vanishes at time:

T (t0, x0)
def
=

√
6

2

(
1− 3

2t20 + 3

) 1
2

(
1− tanh2

(
1

t0x0

)) 1
2

√
3√

2t20+3
− tanh

(
1

t0x0

) . (4.86)

We introduce the function:
R (t)

def
=

1

t arctanh
( √

3√
2t2+3

) . (4.87)

Proposition 4.20. Fix t0 > 0. We have:

T
(
t0,R(t0)

)
= +∞

and T (t0, x) decreases monotonically to t0 (as a function of x) for x > R(t0). In particular, we
have the following pointwise limit:

lim
x→∞

T (t0, x) = t0.
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Proof. The proof is an elementary explicit calculation which we omit.

We provide a short interpretation of proposition 4.20. For each time t0 > 0, the function R(t0)
provides a threshold, such that if u solves (4.84) and satisfies

u(t0) > R(t0)

then u blows up in finite time equal to T (t0, u(t0)) > t0. Fix t0 > 0. For u(t0) close to (but above)
the threshold, the blowup time can be arbitrarily large. As u(t0)→∞, the blowup time approaches
t0 from above. Consequently, for very large initial data, the solution survives for arbitrarily short
time past t0.

Since ut0,x0
bounds a from below, we obtain:

Proposition 4.21. Suppose that (a, b)a0 is a solution of the system (4.39) satisfying:

a(t0) > R(t0) for some t0 > 0.

Then a blows up to +∞ in finite time at most equal to T (t0, a(t0)).

The task is to verify that for large initial data a0, the a-component of the solution eventually
crosses the threshold R, depicted below:

1 2 3 4 5

0.5

1

1.5

2

t

R(t)

Figure 1: Graph of the threshold function R.

We will use the reference time t0 = 3
√

2
2 . This is the time where bHYM crosses P−1. We are able

to obtain the following bound:

Proposition 4.22. Fix a0 > 0. Let (a, b)a0 be the development of the initial data a0. We have:

a

(
3
√

2

2

)
>

2
√

2

3
a0. (4.88)

Proof. Fix a0 > 0. Formula (4.60) demonstrates that -at least for a short time-, ba0 exceeds bHYM
to the right of t = 0. Proposition 4.3 establishes that ba0 > bHYM until t = tmax(a0). Incorporating
this bound with the ODE governing a, we estimate:

.
a =
Pa
t

(
b− 1

P

)
>
Pa
t

(
1√
t2 + 1

− 1

P

)
.

Simplifying, we conclude that a is bounded below by solutions of the following (singular) I.V.P:
.
v(t) = v(t)

t

(
2
√

3√
2t2+3

− 1
)
,

v(0) = 0,
.
v(0) = a0.
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The problem is well-posed (solutions exist and are uniquely determined by the prescribed initial
data) and v takes the form:

va0(t) =
36 a0 t(

3 +
√

6t2 + 9
)2 . (4.89)

The function va0 has a global maximum at time t = t0 = 3
√

2
2 with value 2

√
2

3 a0.

The upshot is that by choosing a0 to be sufficiently large, we can arrange that a(t0) exceeds any
number we like. In particular, we can arrange that a(t0) exceeds the threshold R(t0).

We now have enough to complete the proof of theorem 4.18.

Proof. Evaluating (4.86) and (4.87) at the reference time t0 = 3
√

2
2 we obtain:

T (t0, x) =
3
√

2

2

(
1− tanh2

(√
2

3x

)) 1
2

1− 2 tanh
(√

2
3x

) , R (t0) =

√
2

3 arctanh
(

1
2

) . (4.90)

Let (a, b) be a solution of the system (4.39) satisfying:

a (t0) >

√
2

3 arctanh
(

1
2

) . (4.91)

Using (4.90) and proposition 4.21, we conclude that the solution blows up to +∞ in finite time at
most equal to T

(
t0, a (t0)

)
. Proposition 4.22 guarantees that (4.91) is satisfied provided that we

take:
a0 >

1

2 arctanh
(

1
2

) . (4.92)

By proposition 4.87, the function T (t0, x) is monotonic in x provided that x > R(t0). Condition
(4.92) guarantees that the right hand side of (4.88) exceeds R (t0) and is thus large enough for the
monotonicity statement to apply. We obtain:

T
(
t0, a (t0)

)
< T

(
t0,

2
√

2

3
a0

)
=

3
√

2

2

(
1− tanh2

(
1

2|a0|

)) 1
2

1− 2 tanh
(

1
2|a0|

) .

Defining tblowup(a0) to be equal to the right hand side of this inequality, we have established the
first assertion of theorem 4.18.

Define the positive and negative blowup sets as:

S+
blowup

def
= {a0 ∈ R s.t. aa0 blows up to +∞ in finite time}

S−blowup
def
= {a0 ∈ R s.t. aa0 blows up to −∞ in finite time}

so that:
Sblowup = S+

blowup ∪ S
−
blowup.

The last assertion of theorem 4.18 will follow from proposition 4.2 if we establish the existence of
x > 0 such that:

S+
blowup = (x,∞). (4.93)

We first prove that the positive blowup set is open. Let a0 ∈ S+
blowup and let t? be the blowup time

of the associated solution. By definition:

lim
t→t?

a(t) = +∞.

Consequently, there is a time T ∈ [ t?2 , t?) such that:

a (T ) > 2 sup
t∈[ t?2 ,t?]

R(t).
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By continuity with respect to variation of the initial data, we obtain a δ > 0 such that for ã0 ∈
(a0 − δ, a0 + δ):

a(T )

2
< ã(T ) <

3

2
a(T ).

Consequently:
ã(T ) > sup

t∈[ t?2 ,t?]

R(t) ≥ R(T ). (4.94)

By proposition 4.20, the choice ã0 leads to finite-time blowup and S+
blowup is indeed open.

Finally, by proposition 4.3, if a certain choice of a0 > 0 leads to finite-time blowup, so do all
ã0 > a0. Together with openness, this property yields (4.93) for some x ≥ 0. Theorem 4.15 implies
that x > 0.

4.2.5 The Moduli Space

The results of the preceding sections are sufficient to obtain a complete description of the moduli
space of SO(5) invariant Spin(7) instantons with structure group SO(3) on the Stenzel manifold.
We denote this object asMSpin(7)

inv
(
X8
)
. The trivial bundle P1 doesn’t contribute to this moduli

space. This is due to the nonexistence theorem 3.3. At the risk of being pedantic, we are ignoring
the trivial solution A = 0.

Let P be a G-homogeneous (or cohomogeneity one) principal S-bundle. There are two natural
ways to set up a moduli space of G-invariant solutions to a gauge-theoretic problem on P . One is
to quotient the set of invariant solutions by the group of equivariant gauge transformations. The
other is carried out in two steps. Initially one quotients the set of all (not necessarily invariant)
solutions by the set of all (not necessarily equivariant) gauge transformations. The action of G on
the total space P induces an action on the set of all connections. This action restricts to the set of
solutions and passes to the quotient. The moduli space is then defined to be the G-invariant locus.
There is an obvious map from the first construction to the second construction. If the fiber S is
semisimple and we restrict attention to irreducible connections, this map is a homeomorphism.

In our setting, the structure group is SO(3) (which is indeed semisimple) and furthermore, all
solutions are irreducible. It follows that the two constructions coincide. We will follow the first.
Recall that each invariant connection constitutes its own equivariant gauge equivalence class. Con-
sequently, the moduli spaces on the individual bundles are:

M (Pπ1
)

def
=
{
A ∈ Ainv (Pπ1

) s.t. ?g FA = −Φ ∧ FA
}
,

M (Pπ2)
def
=
{
A ∈ Ainv (Pπ2) s.t. ?g FA = −Φ ∧ FA

}
.

Due to the results of section 4.2.4, we have thatM (Pπ1) is a compact interval. It can be param-
eterized by initial conditions a0 =

.
a(0) leading to global solutions. Using this parameterization,

theorem 4.18 gives us a number x > 0 such that:

M (Pπ1
) ∼= [−x, x]. (4.95)

M (Pπ1
) contains a unique HYM connection AHYMπ1

corresponding to a0 = 0. It is represented
by the red dot in the following diagram. The black dots represent the boundary points ±x.

Figure 2: The Moduli SpaceM (Pπ1)
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Due to the results of section 4.2.3, we have thatM (Pπ2
) is a half-open half-closed interval. We can

parameterize it by the value ν = b(t0) at time t0 =
√

6
2 . Using this parameterization and setting:

ν1
def
= −2

√
5

5
, ν2

def
=

√
10

5
,

we have that:
M (Pπ2

) =
{
Aν s.t. ν ∈ [ν1, ν2)

} ∼= [ν1, ν2). (4.96)

M (Pπ2) contains a unique HYM connection AHYMπ2
corresponding to ν = −

√
10
5 . It is represented

by the green dot in the following diagram. The black dot represents the boundary point ν1.

Figure 3: The Moduli SpaceM (Pπ2
)

We observe thatM (Pπ2
) is not compact. Interestingly, it admits a natural compactification. To

understand the noncompactness phenomenon, we study the (missing) limit ν →
√

10
5 . To identify

what the limit should be we work on X8 − S4. Using the explicit formula (4.45) with ν =
√

10
5

yields the HYM connection AHYMπ1
. We conclude that (over X8 − S4):

lim
ν→ν2

Aν = AHYMπ1
. (4.97)

This can be understood pointwise -with a choice of some background reference connection- or in a
suitable weighted norm.

We conclude that the Spin(7) instantons inM (Pπ2) are trying to converge to the (unique) HYM
connection ofM (Pπ1), but fail to do so as this connection does not smoothly extend to the bundle
on which they live. Notably the singularity happens around a codimension 4 Cayley submanifold
(the singular orbit S4). This reasoning motivates us to glue inM (Pπ1

), by forcing the point a0 = 0

to be the missing endpoint ofM (Pπ2
). This leads to the following picture ofMSpin(7)

inv
(
X8
)
:

Figure 4: The Moduli SpaceMSpin(7)
inv

(
X8
)

The notation in this diagram is consistent with figures 2 and 3. Crucially, the spaceMSpin(7)
inv

(
X8
)

is compact.

This suggests a relationship between the Spin(7) instantons and the HYM connections. Indeed,
they are not equivalent in general; but furthermore, the structure of MSpin(7)

inv
(
X8
)
hints that

the latter might play a role in the compactification of Spin(7) instanton moduli spaces (over
noncompact Calabi-Yau 4-folds). It may be a general phenomenon that certain sequences of
Spin(7) instantons fail to converge because the limit lives on a different bundle. Furthermore this
new bundle should agree with the original one outside of a (codimension 4) Cayley submanifold.
The missing limit should be HYM.
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